1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-05 18:16:23 +03:00

0029769: Uninitialized data with BSplCLib_Cache, BSplSLib_Cache

Implementation of classes BSplCLib_Cache and BSplSLib_Cache is revised:
- Common functionality dealing with spans along one parametric direction is separated to new struct BSplCLib_CacheParams
- Empty constructors are removed; copying is prohibited
- Code reconsidering degree and other parameters on each call to BuildCache() is eliminated; curve parameters must be the same in constructor and all calls to BuildCache()
- Extra call to BuildCache() from constructor is eliminated
This commit is contained in:
abv 2018-06-10 22:40:12 +03:00 committed by bugmaster
parent 3388cf17dc
commit 0a96e0bbc4
9 changed files with 279 additions and 382 deletions

View File

@ -31,159 +31,71 @@ static Standard_Real* ConvertArray(const Handle(TColStd_HArray2OfReal)& theHArra
return (Standard_Real*) &(anArray(anArray.LowerRow(), anArray.LowerCol()));
}
BSplCLib_Cache::BSplCLib_Cache()
BSplCLib_Cache::BSplCLib_Cache(const Standard_Integer& theDegree,
const Standard_Boolean& thePeriodic,
const TColStd_Array1OfReal& theFlatKnots,
const TColgp_Array1OfPnt2d& /* only used to distinguish from 3d variant */,
const TColStd_Array1OfReal* theWeights)
: myIsRational(theWeights != NULL),
myParams (theDegree, thePeriodic, theFlatKnots)
{
myPolesWeights.Nullify();
myIsRational = Standard_False;
mySpanStart = 0.0;
mySpanLength = 0.0;
mySpanIndex = 0;
myDegree = 0;
myFlatKnots.Nullify();
Standard_Integer aPWColNumber = (myIsRational ? 3 : 2);
myPolesWeights = new TColStd_HArray2OfReal (1, theDegree + 1, 1, aPWColNumber);
}
BSplCLib_Cache::BSplCLib_Cache(const Standard_Integer& theDegree,
const Standard_Boolean& thePeriodic,
const TColStd_Array1OfReal& theFlatKnots,
const TColgp_Array1OfPnt2d& thePoles2d,
const TColgp_Array1OfPnt& /* only used to distinguish from 2d variant */,
const TColStd_Array1OfReal* theWeights)
: myIsRational(theWeights != NULL),
myParams (theDegree, thePeriodic, theFlatKnots)
{
Standard_Real aCacheParam = theFlatKnots.Value(theFlatKnots.Lower() + theDegree);
BuildCache(aCacheParam, theDegree, thePeriodic,
theFlatKnots, thePoles2d, theWeights);
Standard_Integer aPWColNumber = (myIsRational ? 4 : 3);
myPolesWeights = new TColStd_HArray2OfReal (1, theDegree + 1, 1, aPWColNumber);
}
BSplCLib_Cache::BSplCLib_Cache(const Standard_Integer& theDegree,
const Standard_Boolean& thePeriodic,
const TColStd_Array1OfReal& theFlatKnots,
const TColgp_Array1OfPnt& thePoles,
const TColStd_Array1OfReal* theWeights)
{
Standard_Real aCacheParam = theFlatKnots.Value(theFlatKnots.Lower() + theDegree);
BuildCache(aCacheParam, theDegree, thePeriodic,
theFlatKnots, thePoles, theWeights);
}
Standard_Boolean BSplCLib_Cache::IsCacheValid(Standard_Real theParameter) const
{
Standard_Real aNewParam = theParameter;
if (!myFlatKnots.IsNull())
PeriodicNormalization(myFlatKnots->Array1(), aNewParam);
Standard_Real aDelta = aNewParam - mySpanStart;
return ((aDelta >= 0.0 || mySpanIndex == mySpanIndexMin) &&
(aDelta < mySpanLength || mySpanIndex == mySpanIndexMax));
return myParams.IsCacheValid (theParameter);
}
void BSplCLib_Cache::PeriodicNormalization(const TColStd_Array1OfReal& theFlatKnots,
Standard_Real& theParameter) const
{
Standard_Real aPeriod = theFlatKnots.Value(theFlatKnots.Upper() - myDegree) -
theFlatKnots.Value(myDegree + 1) ;
if (theParameter < theFlatKnots.Value(myDegree + 1))
{
Standard_Real aScale = IntegerPart(
(theFlatKnots.Value(myDegree + 1) - theParameter) / aPeriod);
theParameter += aPeriod * (aScale + 1.0);
}
if (theParameter > theFlatKnots.Value(theFlatKnots.Upper() - myDegree))
{
Standard_Real aScale = IntegerPart(
(theParameter - theFlatKnots.Value(theFlatKnots.Upper() - myDegree)) / aPeriod);
theParameter -= aPeriod * (aScale + 1.0);
}
}
void BSplCLib_Cache::BuildCache(const Standard_Real& theParameter,
const Standard_Integer& theDegree,
const Standard_Boolean& thePeriodic,
const TColStd_Array1OfReal& theFlatKnots,
const TColgp_Array1OfPnt2d& thePoles2d,
const TColStd_Array1OfReal* theWeights)
{
// Normalize theParameter for periodical B-splines
Standard_Real aNewParam = theParameter;
if (thePeriodic)
{
PeriodicNormalization(theFlatKnots, aNewParam);
myFlatKnots = new TColStd_HArray1OfReal(1, theFlatKnots.Length());
myFlatKnots->ChangeArray1() = theFlatKnots;
}
else if (!myFlatKnots.IsNull()) // Periodical curve became non-periodical
myFlatKnots.Nullify();
// Change the size of cached data if needed
myIsRational = (theWeights != NULL);
Standard_Integer aPWColNumber = myIsRational ? 3 : 2;
if (theDegree > myDegree)
myPolesWeights = new TColStd_HArray2OfReal(1, theDegree + 1, 1, aPWColNumber);
myDegree = theDegree;
mySpanIndex = 0;
BSplCLib::LocateParameter(theDegree, theFlatKnots, BSplCLib::NoMults(),
aNewParam, thePeriodic, mySpanIndex, aNewParam);
mySpanStart = theFlatKnots.Value(mySpanIndex);
mySpanLength = theFlatKnots.Value(mySpanIndex + 1) - mySpanStart;
mySpanIndexMin = thePeriodic ? 0 : myDegree + 1;
mySpanIndexMax = theFlatKnots.Length() - 1 - theDegree;
Standard_Real aNewParam = myParams.PeriodicNormalization (theParameter);
myParams.LocateParameter (aNewParam, theFlatKnots);
// Calculate new cache data
BSplCLib::BuildCache(mySpanStart, mySpanLength, thePeriodic, theDegree,
mySpanIndex, theFlatKnots, thePoles2d, theWeights,
myPolesWeights->ChangeArray2());
BSplCLib::BuildCache (myParams.SpanStart, myParams.SpanLength, myParams.IsPeriodic,
myParams.Degree, myParams.SpanIndex, theFlatKnots, thePoles2d,
theWeights, myPolesWeights->ChangeArray2());
}
void BSplCLib_Cache::BuildCache(const Standard_Real& theParameter,
const Standard_Integer& theDegree,
const Standard_Boolean& thePeriodic,
const TColStd_Array1OfReal& theFlatKnots,
const TColgp_Array1OfPnt& thePoles,
const TColStd_Array1OfReal* theWeights)
{
// Create list of knots with repetitions and normalize theParameter for periodical B-splines
Standard_Real aNewParam = theParameter;
if (thePeriodic)
{
PeriodicNormalization(theFlatKnots, aNewParam);
myFlatKnots = new TColStd_HArray1OfReal(1, theFlatKnots.Length());
myFlatKnots->ChangeArray1() = theFlatKnots;
}
else if (!myFlatKnots.IsNull()) // Periodical curve became non-periodical
myFlatKnots.Nullify();
// Change the size of cached data if needed
myIsRational = (theWeights != NULL);
Standard_Integer aPWColNumber = myIsRational ? 4 : 3;
if (theDegree > myDegree)
myPolesWeights = new TColStd_HArray2OfReal(1, theDegree + 1, 1, aPWColNumber);
myDegree = theDegree;
mySpanIndex = 0;
BSplCLib::LocateParameter(theDegree, theFlatKnots, BSplCLib::NoMults(),
aNewParam, thePeriodic, mySpanIndex, aNewParam);
mySpanStart = theFlatKnots.Value(mySpanIndex);
mySpanLength = theFlatKnots.Value(mySpanIndex + 1) - mySpanStart;
mySpanIndexMin = thePeriodic ? 0 : myDegree + 1;
mySpanIndexMax = theFlatKnots.Length() - 1 - theDegree;
Standard_Real aNewParam = myParams.PeriodicNormalization (theParameter);
myParams.LocateParameter (aNewParam, theFlatKnots);
// Calculate new cache data
BSplCLib::BuildCache(mySpanStart, mySpanLength, thePeriodic, theDegree,
mySpanIndex, theFlatKnots, thePoles, theWeights,
myPolesWeights->ChangeArray2());
BSplCLib::BuildCache (myParams.SpanStart, myParams.SpanLength, myParams.IsPeriodic,
myParams.Degree, myParams.SpanIndex, theFlatKnots, thePoles,
theWeights, myPolesWeights->ChangeArray2());
}
void BSplCLib_Cache::CalculateDerivative(const Standard_Real& theParameter,
const Standard_Integer& theDerivative,
Standard_Real& theDerivArray) const
{
Standard_Real aNewParameter = theParameter;
if (!myFlatKnots.IsNull()) // B-spline is periodical
PeriodicNormalization(myFlatKnots->Array1(), aNewParameter);
aNewParameter = (aNewParameter - mySpanStart) / mySpanLength;
Standard_Real aNewParameter = myParams.PeriodicNormalization (theParameter);
aNewParameter = (aNewParameter - myParams.SpanStart) / myParams.SpanLength;
Standard_Real* aPolesArray = ConvertArray(myPolesWeights);
Standard_Integer aDimension = myPolesWeights->RowLength(); // number of columns
@ -199,23 +111,23 @@ void BSplCLib_Cache::CalculateDerivative(const Standard_Real& theParameter,
// When the degree of curve is lesser than the requested derivative,
// nullify array cells corresponding to greater derivatives
Standard_Integer aDerivative = theDerivative;
if (myDegree < theDerivative)
if (myParams.Degree < theDerivative)
{
aDerivative = myDegree;
for (Standard_Integer ind = myDegree * aDimension; ind < (theDerivative + 1) * aDimension; ind++)
aDerivative = myParams.Degree;
for (Standard_Integer ind = myParams.Degree * aDimension; ind < (theDerivative + 1) * aDimension; ind++)
{
aPntDeriv[ind] = 0.0;
(&theDerivArray)[ind] = 0.0; // should be cleared separately, because aPntDeriv may look to another memory area
}
}
PLib::EvalPolynomial(aNewParameter, aDerivative, myDegree, aDimension,
PLib::EvalPolynomial(aNewParameter, aDerivative, myParams.Degree, aDimension,
aPolesArray[0], aPntDeriv[0]);
// Unnormalize derivatives since those are computed normalized
Standard_Real aFactor = 1.0;
for (Standard_Integer deriv = 1; deriv <= aDerivative; deriv++)
{
aFactor /= mySpanLength;
aFactor /= myParams.SpanLength;
for (Standard_Integer ind = 0; ind < aDimension; ind++)
aPntDeriv[aDimension * deriv + ind] *= aFactor;
}
@ -227,17 +139,15 @@ void BSplCLib_Cache::CalculateDerivative(const Standard_Real& theParameter,
void BSplCLib_Cache::D0(const Standard_Real& theParameter, gp_Pnt2d& thePoint) const
{
Standard_Real aNewParameter = theParameter;
if (!myFlatKnots.IsNull()) // B-spline is periodical
PeriodicNormalization(myFlatKnots->Array1(), aNewParameter);
aNewParameter = (aNewParameter - mySpanStart) / mySpanLength;
Standard_Real aNewParameter = myParams.PeriodicNormalization (theParameter);
aNewParameter = (aNewParameter - myParams.SpanStart) / myParams.SpanLength;
Standard_Real* aPolesArray = ConvertArray(myPolesWeights);
Standard_Real aPoint[4];
Standard_Integer aDimension = myPolesWeights->RowLength(); // number of columns
PLib::NoDerivativeEvalPolynomial(aNewParameter, myDegree,
aDimension, myDegree * aDimension,
PLib::NoDerivativeEvalPolynomial(aNewParameter, myParams.Degree,
aDimension, myParams.Degree * aDimension,
aPolesArray[0], aPoint[0]);
thePoint.SetCoord(aPoint[0], aPoint[1]);
@ -247,17 +157,15 @@ void BSplCLib_Cache::D0(const Standard_Real& theParameter, gp_Pnt2d& thePoint) c
void BSplCLib_Cache::D0(const Standard_Real& theParameter, gp_Pnt& thePoint) const
{
Standard_Real aNewParameter = theParameter;
if (!myFlatKnots.IsNull()) // B-spline is periodical
PeriodicNormalization(myFlatKnots->Array1(), aNewParameter);
aNewParameter = (aNewParameter - mySpanStart) / mySpanLength;
Standard_Real aNewParameter = myParams.PeriodicNormalization (theParameter);
aNewParameter = (aNewParameter - myParams.SpanStart) / myParams.SpanLength;
Standard_Real* aPolesArray = ConvertArray(myPolesWeights);
Standard_Real aPoint[4];
Standard_Integer aDimension = myPolesWeights->RowLength(); // number of columns
PLib::NoDerivativeEvalPolynomial(aNewParameter, myDegree,
aDimension, myDegree * aDimension,
PLib::NoDerivativeEvalPolynomial(aNewParameter, myParams.Degree,
aDimension, myParams.Degree * aDimension,
aPolesArray[0], aPoint[0]);
thePoint.SetCoord(aPoint[0], aPoint[1], aPoint[2]);

View File

@ -19,7 +19,6 @@
#include <Standard_Type.hxx>
#include <Standard_Transient.hxx>
#include <gp_Pnt2d.hxx>
#include <gp_Pnt.hxx>
#include <gp_Vec2d.hxx>
@ -31,6 +30,8 @@
#include <TColgp_Array1OfPnt.hxx>
#include <TColgp_Array1OfPnt2d.hxx>
#include <BSplCLib_CacheParams.hxx>
//! \brief A cache class for Bezier and B-spline curves.
//!
//! Defines all data, that can be cached on a span of a curve.
@ -38,11 +39,10 @@
class BSplCLib_Cache : public Standard_Transient
{
public:
//! Default constructor
Standard_EXPORT BSplCLib_Cache();
//! Constructor for caching of 2D curves
//! Constructor, prepares data structures for caching values on a 2d curve.
//! \param theDegree degree of the curve
//! \param thePeriodic identify the curve is periodic
//! \param thePeriodic identify whether the curve is periodic
//! \param theFlatKnots knots of Bezier/B-spline curve (with repetitions)
//! \param thePoles2d array of poles of 2D curve
//! \param theWeights array of weights of corresponding poles
@ -51,9 +51,10 @@ public:
const TColStd_Array1OfReal& theFlatKnots,
const TColgp_Array1OfPnt2d& thePoles2d,
const TColStd_Array1OfReal* theWeights = NULL);
//! Constructor for caching of 3D curves
//! Constructor, prepares data structures for caching values on a 3d curve.
//! \param theDegree degree of the curve
//! \param thePeriodic identify the curve is periodic
//! \param thePeriodic identify whether the curve is periodic
//! \param theFlatKnots knots of Bezier/B-spline curve (with repetitions)
//! \param thePoles array of poles of 3D curve
//! \param theWeights array of weights of corresponding poles
@ -69,27 +70,20 @@ public:
//! Recomputes the cache data for 2D curves. Does not verify validity of the cache
//! \param theParameter the value on the knot's axis to identify the span
//! \param theDegree degree of the curve
//! \param thePeriodic identify the curve is periodic
//! \param theFlatKnots knots of Bezier/B-spline curve (with repetitions)
//! \param thePoles2d array of poles of 2D curve
//! \param theWeights array of weights of corresponding poles
Standard_EXPORT void BuildCache(const Standard_Real& theParameter,
const Standard_Integer& theDegree,
const Standard_Boolean& thePeriodic,
const TColStd_Array1OfReal& theFlatKnots,
const TColgp_Array1OfPnt2d& thePoles2d,
const TColStd_Array1OfReal* theWeights = NULL);
const TColStd_Array1OfReal* theWeights);
//! Recomputes the cache data for 3D curves. Does not verify validity of the cache
//! \param theParameter the value on the knot's axis to identify the span
//! \param theDegree degree of the curve
//! \param thePeriodic identify the curve is periodic
//! \param theFlatKnots knots of Bezier/B-spline curve (with repetitions)
//! \param thePoles array of poles of 3D curve
//! \param theWeights array of weights of corresponding poles
Standard_EXPORT void BuildCache(const Standard_Real& theParameter,
const Standard_Integer& theDegree,
const Standard_Boolean& thePeriodic,
const TColStd_Array1OfReal& theFlatKnots,
const TColgp_Array1OfPnt& thePoles,
const TColStd_Array1OfReal* theWeights = NULL);
@ -142,10 +136,6 @@ public:
DEFINE_STANDARD_RTTIEXT(BSplCLib_Cache,Standard_Transient)
protected:
//! Normalizes the parameter for periodical curves
//! \param theFlatKnots knots with repetitions
//! \param theParameter the value to be normalized into the knots array
void PeriodicNormalization(const TColStd_Array1OfReal& theFlatKnots, Standard_Real& theParameter) const;
//! Fills array of derivatives in the selected point of the curve
//! \param[in] theParameter parameter of the calculation
@ -156,21 +146,18 @@ protected:
const Standard_Integer& theDerivative,
Standard_Real& theDerivArray) const;
// copying is prohibited
BSplCLib_Cache (const BSplCLib_Cache&);
void operator = (const BSplCLib_Cache&);
private:
Handle(TColStd_HArray2OfReal) myPolesWeights; ///< array of poles and weights of calculated cache
Standard_Boolean myIsRational; //!< identifies the rationality of Bezier/B-spline curve
BSplCLib_CacheParams myParams; //!< cache parameters
Handle(TColStd_HArray2OfReal) myPolesWeights; //!< array of poles and weights of calculated cache
// the array has following structure:
// x1 y1 [z1] [w1]
// x2 y2 [z2] [w2] etc
// for 2D-curves there is no z conponent, for non-rational curves there is no weight
Standard_Boolean myIsRational; ///< identifies the rationality of Bezier/B-spline curve
Standard_Real mySpanStart; ///< parameter for the first point of the span
Standard_Real mySpanLength; ///< length of the span
Standard_Integer mySpanIndex; ///< index of the span on Bezier/B-spline curve
Standard_Integer mySpanIndexMin; ///< minimal index of span on Bezier/B-spline curve
Standard_Integer mySpanIndexMax; ///< maximal number of spans on Bezier/B-spline curve
Standard_Integer myDegree; ///< degree of Bezier/B-spline
Handle(TColStd_HArray1OfReal) myFlatKnots; ///< knots of Bezier/B-spline (used for periodic normalization of parameters, exists only for periodical splines)
};
DEFINE_STANDARD_HANDLE(BSplCLib_Cache, Standard_Transient)

View File

@ -0,0 +1,106 @@
// Copyright (c) 2018 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#ifndef _BSplCLib_CacheParams_Headerfile
#define _BSplCLib_CacheParams_Headerfile
#include <Standard_Real.hxx>
#include <TColStd_Array1OfReal.hxx>
#include <BSplCLib.hxx>
//! Simple structure containing parameters describing parameterization
//! of a B-spline curve or a surface in one direction (U or V),
//! and data of the current span for its caching
struct BSplCLib_CacheParams
{
const Standard_Integer Degree; ///< degree of Bezier/B-spline
const Standard_Boolean IsPeriodic; ///< true of the B-spline is periodic
const Standard_Real FirstParameter; ///< first valid parameter
const Standard_Real LastParameter; ///< last valid parameter
const Standard_Integer SpanIndexMin; ///< minimal index of span
const Standard_Integer SpanIndexMax; ///< maximal index of span
Standard_Real SpanStart; ///< parameter for the frst point of the span
Standard_Real SpanLength; ///< length of the span
Standard_Integer SpanIndex; ///< index of the span
//! Constructor, prepares data structures for caching.
//! \param theDegree degree of the B-spline (or Bezier)
//! \param thePeriodic identify whether the B-spline is periodic
//! \param theFlatKnots knots of Bezier / B-spline parameterization
BSplCLib_CacheParams (Standard_Integer theDegree, Standard_Boolean thePeriodic,
const TColStd_Array1OfReal& theFlatKnots)
: Degree(theDegree),
IsPeriodic(thePeriodic),
FirstParameter(theFlatKnots.Value(theFlatKnots.Lower() + theDegree)),
LastParameter(theFlatKnots.Value(theFlatKnots.Upper() - theDegree)),
SpanIndexMin(theFlatKnots.Lower() + theDegree),
SpanIndexMax(theFlatKnots.Upper() - theDegree - 1),
SpanStart(0.),
SpanLength(0.),
SpanIndex(0)
{}
//! Normalizes the parameter for periodic B-splines
//! \param theParameter the value to be normalized into the knots array
Standard_Real PeriodicNormalization (Standard_Real theParameter) const
{
if (IsPeriodic)
{
if (theParameter < FirstParameter)
{
Standard_Real aPeriod = LastParameter - FirstParameter;
Standard_Real aScale = IntegerPart ((FirstParameter - theParameter) / aPeriod);
return theParameter + aPeriod * (aScale + 1.0);
}
if (theParameter > LastParameter)
{
Standard_Real aPeriod = LastParameter - FirstParameter;
Standard_Real aScale = IntegerPart ((theParameter - LastParameter) / aPeriod);
return theParameter - aPeriod * (aScale + 1.0);
}
}
return theParameter;
}
//! Verifies validity of the cache using flat parameter of the point
//! \param theParameter parameter of the point placed in the span
Standard_Boolean IsCacheValid (Standard_Real theParameter) const
{
Standard_Real aNewParam = PeriodicNormalization (theParameter);
Standard_Real aDelta = aNewParam - SpanStart;
return ((aDelta >= 0.0 || SpanIndex == SpanIndexMin) &&
(aDelta < SpanLength || SpanIndex == SpanIndexMax));
}
//! Computes span for the specified parameter
//! \param theParameter parameter of the point placed in the span
//! \param theFlatKnots knots of Bezier / B-spline parameterization
void LocateParameter (Standard_Real& theParameter, const TColStd_Array1OfReal& theFlatKnots)
{
SpanIndex = 0;
BSplCLib::LocateParameter (Degree, theFlatKnots, BSplCLib::NoMults(),
theParameter, IsPeriodic, SpanIndex, theParameter);
SpanStart = theFlatKnots.Value(SpanIndex);
SpanLength = theFlatKnots.Value(SpanIndex + 1) - SpanStart;
}
private:
// copying is prohibited
BSplCLib_CacheParams (const BSplCLib_CacheParams&);
void operator = (const BSplCLib_CacheParams&);
};
#endif

View File

@ -7,6 +7,7 @@ BSplCLib_3.cxx
BSplCLib_BzSyntaxes.cxx
BSplCLib_Cache.cxx
BSplCLib_Cache.hxx
BSplCLib_CacheParams.hxx
BSplCLib_CurveComputation.gxx
BSplCLib_EvaluatorFunction.hxx
BSplCLib_KnotDistribution.hxx

View File

@ -31,152 +31,58 @@ static Standard_Real* ConvertArray(const Handle(TColStd_HArray2OfReal)& theHArra
return (Standard_Real*) &(anArray(anArray.LowerRow(), anArray.LowerCol()));
}
BSplSLib_Cache::BSplSLib_Cache()
{
myPolesWeights.Nullify();
myIsRational = Standard_False;
mySpanStart[0] = mySpanStart[1] = 0.0;
mySpanLength[0] = mySpanLength[1] = 0.0;
mySpanIndex[0] = mySpanIndex[1] = 0;
myDegree[0] = myDegree[1] = 0;
myFlatKnots[0].Nullify();
myFlatKnots[1].Nullify();
}
BSplSLib_Cache::BSplSLib_Cache(const Standard_Integer& theDegreeU,
const Standard_Boolean& thePeriodicU,
const TColStd_Array1OfReal& theFlatKnotsU,
const Standard_Integer& theDegreeV,
const Standard_Boolean& thePeriodicV,
const TColStd_Array1OfReal& theFlatKnotsV,
const TColgp_Array2OfPnt& thePoles,
const TColStd_Array2OfReal* theWeights)
: myIsRational(theWeights != NULL),
myParamsU (theDegreeU, thePeriodicU, theFlatKnotsU),
myParamsV (theDegreeV, thePeriodicV, theFlatKnotsV)
{
Standard_Real aU = theFlatKnotsU.Value(theFlatKnotsU.Lower() + theDegreeU);
Standard_Real aV = theFlatKnotsV.Value(theFlatKnotsV.Lower() + theDegreeV);
BuildCache(aU, aV,
theDegreeU, thePeriodicU, theFlatKnotsU,
theDegreeV, thePeriodicV, theFlatKnotsV,
thePoles, theWeights);
Standard_Integer aMinDegree = Min (theDegreeU, theDegreeV);
Standard_Integer aMaxDegree = Max (theDegreeU, theDegreeV);
Standard_Integer aPWColNumber = (myIsRational ? 4 : 3);
myPolesWeights = new TColStd_HArray2OfReal(1, aMaxDegree + 1, 1, aPWColNumber * (aMinDegree + 1));
}
Standard_Boolean BSplSLib_Cache::IsCacheValid(Standard_Real theParameterU,
Standard_Real theParameterV) const
{
Standard_Real aNewU = theParameterU;
Standard_Real aNewV = theParameterV;
if (!myFlatKnots[0].IsNull())
PeriodicNormalization(myDegree[0], myFlatKnots[0]->Array1(), aNewU);
if (!myFlatKnots[1].IsNull())
PeriodicNormalization(myDegree[1], myFlatKnots[1]->Array1(), aNewV);
Standard_Real aDelta0 = aNewU - mySpanStart[0];
Standard_Real aDelta1 = aNewV - mySpanStart[1];
return ((aDelta0 >= -mySpanLength[0] || mySpanIndex[0] == mySpanIndexMin[0]) &&
(aDelta0 < mySpanLength[0] || mySpanIndex[0] == mySpanIndexMax[0]) &&
(aDelta1 >= -mySpanLength[1] || mySpanIndex[1] == mySpanIndexMin[1]) &&
(aDelta1 < mySpanLength[1] || mySpanIndex[1] == mySpanIndexMax[1]));
return myParamsU.IsCacheValid (theParameterU) &&
myParamsV.IsCacheValid (theParameterV);
}
void BSplSLib_Cache::PeriodicNormalization(const Standard_Integer& theDegree,
const TColStd_Array1OfReal& theFlatKnots,
Standard_Real& theParameter) const
{
Standard_Real aPeriod = theFlatKnots.Value(theFlatKnots.Upper() - theDegree) -
theFlatKnots.Value(theDegree + 1) ;
if (theParameter < theFlatKnots.Value(theDegree + 1))
{
Standard_Real aScale = IntegerPart(
(theFlatKnots.Value(theDegree + 1) - theParameter) / aPeriod);
theParameter += aPeriod * (aScale + 1.0);
}
if (theParameter > theFlatKnots.Value(theFlatKnots.Upper() - theDegree))
{
Standard_Real aScale = IntegerPart(
(theParameter - theFlatKnots.Value(theFlatKnots.Upper() - theDegree)) / aPeriod);
theParameter -= aPeriod * (aScale + 1.0);
}
}
void BSplSLib_Cache::BuildCache(const Standard_Real& theParameterU,
const Standard_Real& theParameterV,
const Standard_Integer& theDegreeU,
const Standard_Boolean& thePeriodicU,
const TColStd_Array1OfReal& theFlatKnotsU,
const Standard_Integer& theDegreeV,
const Standard_Boolean& thePeriodicV,
const TColStd_Array1OfReal& theFlatKnotsV,
const TColgp_Array2OfPnt& thePoles,
const TColStd_Array2OfReal* theWeights)
{
// Normalize the parameters for periodical B-splines
Standard_Real aNewParamU = theParameterU;
if (thePeriodicU)
{
PeriodicNormalization(theDegreeU, theFlatKnotsU, aNewParamU);
myFlatKnots[0] = new TColStd_HArray1OfReal(1, theFlatKnotsU.Length());
myFlatKnots[0]->ChangeArray1() = theFlatKnotsU;
}
else if (!myFlatKnots[0].IsNull()) // Periodical curve became non-periodical
myFlatKnots[0].Nullify();
Standard_Real aNewParamU = myParamsU.PeriodicNormalization (theParameterU);
Standard_Real aNewParamV = myParamsV.PeriodicNormalization (theParameterV);
Standard_Real aNewParamV = theParameterV;
if (thePeriodicV)
{
PeriodicNormalization(theDegreeV, theFlatKnotsV, aNewParamV);
myFlatKnots[1] = new TColStd_HArray1OfReal(1, theFlatKnotsV.Length());
myFlatKnots[1]->ChangeArray1() = theFlatKnotsV;
}
else if (!myFlatKnots[1].IsNull()) // Periodical curve became non-periodical
myFlatKnots[1].Nullify();
myParamsU.LocateParameter (aNewParamU, theFlatKnotsU);
myParamsV.LocateParameter (aNewParamV, theFlatKnotsV);
Standard_Integer aMinDegree = Min(theDegreeU, theDegreeV);
Standard_Integer aMaxDegree = Max(theDegreeU, theDegreeV);
// Change the size of cached data if needed
myIsRational = (theWeights != NULL);
Standard_Integer aPWColNumber = myIsRational ? 4 : 3;
if (theDegreeU > myDegree[0] || theDegreeV > myDegree[1])
myPolesWeights = new TColStd_HArray2OfReal(1, aMaxDegree + 1, 1, aPWColNumber * (aMinDegree + 1));
myDegree[0] = theDegreeU;
myDegree[1] = theDegreeV;
mySpanIndex[0] = mySpanIndex[1] = 0;
BSplCLib::LocateParameter(theDegreeU, theFlatKnotsU, BSplCLib::NoMults(), aNewParamU,
thePeriodicU, mySpanIndex[0], aNewParamU);
BSplCLib::LocateParameter(theDegreeV, theFlatKnotsV, BSplCLib::NoMults(), aNewParamV,
thePeriodicV, mySpanIndex[1], aNewParamV);
// Protection against Out of Range exception.
if (mySpanIndex[0] >= theFlatKnotsU.Length()) {
mySpanIndex[0] = theFlatKnotsU.Length() - 1;
}
mySpanLength[0] = (theFlatKnotsU.Value(mySpanIndex[0] + 1) - theFlatKnotsU.Value(mySpanIndex[0])) * 0.5;
mySpanStart[0] = theFlatKnotsU.Value(mySpanIndex[0]) + mySpanLength[0];
// Protection against Out of Range exception.
if (mySpanIndex[1] >= theFlatKnotsV.Length()) {
mySpanIndex[1] = theFlatKnotsV.Length() - 1;
}
mySpanLength[1] = (theFlatKnotsV.Value(mySpanIndex[1] + 1) - theFlatKnotsV.Value(mySpanIndex[1])) * 0.5;
mySpanStart[1] = theFlatKnotsV.Value(mySpanIndex[1]) + mySpanLength[1];
mySpanIndexMin[0] = thePeriodicU ? 0 : theDegreeU + 1;
mySpanIndexMax[0] = theFlatKnotsU.Length() - 1 - theDegreeU;
mySpanIndexMin[1] = thePeriodicV ? 0 : theDegreeV + 1;
mySpanIndexMax[1] = theFlatKnotsV.Length() - 1 - theDegreeV;
// BSplSLib uses different convention for span parameters than BSplCLib
// (Start is in the middle of the span and length is half-span),
// thus we need to amend them here
Standard_Real aSpanLengthU = 0.5 * myParamsU.SpanLength;
Standard_Real aSpanStartU = myParamsU.SpanStart + aSpanLengthU;
Standard_Real aSpanLengthV = 0.5 * myParamsV.SpanLength;
Standard_Real aSpanStartV = myParamsV.SpanStart + aSpanLengthV;
// Calculate new cache data
BSplSLib::BuildCache(mySpanStart[0], mySpanStart[1],
mySpanLength[0], mySpanLength[1],
thePeriodicU, thePeriodicV,
theDegreeU, theDegreeV,
mySpanIndex[0], mySpanIndex[1],
BSplSLib::BuildCache (aSpanStartU, aSpanStartV,
aSpanLengthU, aSpanLengthV,
myParamsU.IsPeriodic, myParamsV.IsPeriodic,
myParamsU.Degree, myParamsV.Degree,
myParamsU.SpanIndex, myParamsV.SpanIndex,
theFlatKnotsU, theFlatKnotsV,
thePoles, theWeights, myPolesWeights->ChangeArray2());
}
@ -186,24 +92,29 @@ void BSplSLib_Cache::D0(const Standard_Real& theU,
const Standard_Real& theV,
gp_Pnt& thePoint) const
{
Standard_Real aNewU = theU;
Standard_Real aNewV = theV;
if (!myFlatKnots[0].IsNull()) // B-spline is U-periodical
PeriodicNormalization(myDegree[0], myFlatKnots[0]->Array1(), aNewU);
aNewU = (aNewU - mySpanStart[0]) / mySpanLength[0];
if (!myFlatKnots[1].IsNull()) // B-spline is V-periodical
PeriodicNormalization(myDegree[1], myFlatKnots[1]->Array1(), aNewV);
aNewV = (aNewV - mySpanStart[1]) / mySpanLength[1];
Standard_Real aNewU = myParamsU.PeriodicNormalization (theU);
Standard_Real aNewV = myParamsV.PeriodicNormalization (theV);
// BSplSLib uses different convention for span parameters than BSplCLib
// (Start is in the middle of the span and length is half-span),
// thus we need to amend them here
Standard_Real aSpanLengthU = 0.5 * myParamsU.SpanLength;
Standard_Real aSpanStartU = myParamsU.SpanStart + aSpanLengthU;
Standard_Real aSpanLengthV = 0.5 * myParamsV.SpanLength;
Standard_Real aSpanStartV = myParamsV.SpanStart + aSpanLengthV;
aNewU = (aNewU - aSpanStartU) / aSpanLengthU;
aNewV = (aNewV - aSpanStartV) / aSpanLengthV;
Standard_Real* aPolesArray = ConvertArray(myPolesWeights);
Standard_Real aPoint[4];
Standard_Integer aDimension = myIsRational ? 4 : 3;
Standard_Integer aCacheCols = myPolesWeights->RowLength();
Standard_Integer aMinMaxDegree[2] = {Min(myDegree[0], myDegree[1]),
Max(myDegree[0], myDegree[1])};
Standard_Integer aMinMaxDegree[2] = {Min(myParamsU.Degree, myParamsV.Degree),
Max(myParamsU.Degree, myParamsV.Degree)};
Standard_Real aParameters[2];
if (myDegree[0] > myDegree[1])
if (myParamsU.Degree > myParamsV.Degree)
{
aParameters[0] = aNewV;
aParameters[1] = aNewU;
@ -238,16 +149,21 @@ void BSplSLib_Cache::D1(const Standard_Real& theU,
gp_Vec& theTangentU,
gp_Vec& theTangentV) const
{
Standard_Real aNewU = theU;
Standard_Real aNewV = theV;
Standard_Real anInvU = 1.0 / mySpanLength[0];
Standard_Real anInvV = 1.0 / mySpanLength[1];
if (!myFlatKnots[0].IsNull()) // B-spline is U-periodical
PeriodicNormalization(myDegree[0], myFlatKnots[0]->Array1(), aNewU);
aNewU = (aNewU - mySpanStart[0]) * anInvU;
if (!myFlatKnots[1].IsNull()) // B-spline is V-periodical
PeriodicNormalization(myDegree[1], myFlatKnots[1]->Array1(), aNewV);
aNewV = (aNewV - mySpanStart[1]) * anInvV;
Standard_Real aNewU = myParamsU.PeriodicNormalization (theU);
Standard_Real aNewV = myParamsV.PeriodicNormalization (theV);
// BSplSLib uses different convention for span parameters than BSplCLib
// (Start is in the middle of the span and length is half-span),
// thus we need to amend them here
Standard_Real aSpanLengthU = 0.5 * myParamsU.SpanLength;
Standard_Real aSpanStartU = myParamsU.SpanStart + aSpanLengthU;
Standard_Real aSpanLengthV = 0.5 * myParamsV.SpanLength;
Standard_Real aSpanStartV = myParamsV.SpanStart + aSpanLengthV;
Standard_Real anInvU = 1.0 / aSpanLengthU;
Standard_Real anInvV = 1.0 / aSpanLengthV;
aNewU = (aNewU - aSpanStartU) * anInvU;
aNewV = (aNewV - aSpanStartV) * anInvV;
Standard_Real* aPolesArray = ConvertArray(myPolesWeights);
Standard_Real aPntDeriv[16]; // result storage (point and derivative coordinates)
@ -255,11 +171,11 @@ void BSplSLib_Cache::D1(const Standard_Real& theU,
Standard_Integer aDimension = myIsRational ? 4 : 3;
Standard_Integer aCacheCols = myPolesWeights->RowLength();
Standard_Integer aMinMaxDegree[2] = {Min(myDegree[0], myDegree[1]),
Max(myDegree[0], myDegree[1])};
Standard_Integer aMinMaxDegree[2] = {Min(myParamsU.Degree, myParamsV.Degree),
Max(myParamsU.Degree, myParamsV.Degree)};
Standard_Real aParameters[2];
if (myDegree[0] > myDegree[1])
if (myParamsU.Degree > myParamsV.Degree)
{
aParameters[0] = aNewV;
aParameters[1] = aNewU;
@ -293,7 +209,7 @@ void BSplSLib_Cache::D1(const Standard_Real& theU,
}
thePoint.SetCoord(aResult[0], aResult[1], aResult[2]);
if (myDegree[0] > myDegree[1])
if (myParamsU.Degree > myParamsV.Degree)
{
theTangentV.SetCoord(aResult[aDimension], aResult[aDimension + 1], aResult[aDimension + 2]);
Standard_Integer aShift = aDimension<<1;
@ -319,16 +235,21 @@ void BSplSLib_Cache::D2(const Standard_Real& theU,
gp_Vec& theCurvatureV,
gp_Vec& theCurvatureUV) const
{
Standard_Real aNewU = theU;
Standard_Real aNewV = theV;
Standard_Real anInvU = 1.0 / mySpanLength[0];
Standard_Real anInvV = 1.0 / mySpanLength[1];
if (!myFlatKnots[0].IsNull()) // B-spline is U-periodical
PeriodicNormalization(myDegree[0], myFlatKnots[0]->Array1(), aNewU);
aNewU = (aNewU - mySpanStart[0]) * anInvU;
if (!myFlatKnots[1].IsNull()) // B-spline is V-periodical
PeriodicNormalization(myDegree[1], myFlatKnots[1]->Array1(), aNewV);
aNewV = (aNewV - mySpanStart[1]) * anInvV;
Standard_Real aNewU = myParamsU.PeriodicNormalization (theU);
Standard_Real aNewV = myParamsV.PeriodicNormalization (theV);
// BSplSLib uses different convention for span parameters than BSplCLib
// (Start is in the middle of the span and length is half-span),
// thus we need to amend them here
Standard_Real aSpanLengthU = 0.5 * myParamsU.SpanLength;
Standard_Real aSpanStartU = myParamsU.SpanStart + aSpanLengthU;
Standard_Real aSpanLengthV = 0.5 * myParamsV.SpanLength;
Standard_Real aSpanStartV = myParamsV.SpanStart + aSpanLengthV;
Standard_Real anInvU = 1.0 / aSpanLengthU;
Standard_Real anInvV = 1.0 / aSpanLengthV;
aNewU = (aNewU - aSpanStartU) * anInvU;
aNewV = (aNewV - aSpanStartV) * anInvV;
Standard_Real* aPolesArray = ConvertArray(myPolesWeights);
Standard_Real aPntDeriv[36]; // result storage (point and derivative coordinates)
@ -336,11 +257,11 @@ void BSplSLib_Cache::D2(const Standard_Real& theU,
Standard_Integer aDimension = myIsRational ? 4 : 3;
Standard_Integer aCacheCols = myPolesWeights->RowLength();
Standard_Integer aMinMaxDegree[2] = {Min(myDegree[0], myDegree[1]),
Max(myDegree[0], myDegree[1])};
Standard_Integer aMinMaxDegree[2] = {Min(myParamsU.Degree, myParamsV.Degree),
Max(myParamsU.Degree, myParamsV.Degree)};
Standard_Real aParameters[2];
if (myDegree[0] > myDegree[1])
if (myParamsU.Degree > myParamsV.Degree)
{
aParameters[0] = aNewV;
aParameters[1] = aNewU;
@ -390,7 +311,7 @@ void BSplSLib_Cache::D2(const Standard_Real& theU,
}
thePoint.SetCoord(aResult[0], aResult[1], aResult[2]);
if (myDegree[0] > myDegree[1])
if (myParamsU.Degree > myParamsV.Degree)
{
theTangentV.SetCoord(aResult[aDimension], aResult[aDimension + 1], aResult[aDimension + 2]);
Standard_Integer aShift = aDimension<<1;

View File

@ -29,6 +29,8 @@
#include <TColStd_Array1OfReal.hxx>
#include <TColStd_Array2OfReal.hxx>
#include <BSplCLib_CacheParams.hxx>
//! \brief A cache class for Bezier and B-spline surfaces.
//!
//! Defines all data, that can be cached on a span of the surface.
@ -36,8 +38,7 @@
class BSplSLib_Cache : public Standard_Transient
{
public:
//! Default constructor
Standard_EXPORT BSplSLib_Cache();
//! Constructor for caching of the span for the surface
//! \param theDegreeU degree along the first parameter (U) of the surface
//! \param thePeriodicU identify the surface is periodical along U axis
@ -45,7 +46,6 @@ public:
//! \param theDegreeV degree alogn the second parameter (V) of the surface
//! \param thePeriodicV identify the surface is periodical along V axis
//! \param theFlatKnotsV knots of the surface (with repetition) along V axis
//! \param thePoles array of poles of the surface
//! \param theWeights array of weights of corresponding poles
Standard_EXPORT BSplSLib_Cache(const Standard_Integer& theDegreeU,
const Standard_Boolean& thePeriodicU,
@ -53,7 +53,6 @@ public:
const Standard_Integer& theDegreeV,
const Standard_Boolean& thePeriodicV,
const TColStd_Array1OfReal& theFlatKnotsV,
const TColgp_Array2OfPnt& thePoles,
const TColStd_Array2OfReal* theWeights = NULL);
//! Verifies validity of the cache using parameters of the point
@ -75,11 +74,7 @@ public:
//! \param theWeights array of weights of corresponding poles
Standard_EXPORT void BuildCache(const Standard_Real& theParameterU,
const Standard_Real& theParameterV,
const Standard_Integer& theDegreeU,
const Standard_Boolean& thePeriodicU,
const TColStd_Array1OfReal& theFlatKnotsU,
const Standard_Integer& theDegreeV,
const Standard_Boolean& thePeriodicV,
const TColStd_Array1OfReal& theFlatKnotsV,
const TColgp_Array2OfPnt& thePoles,
const TColStd_Array2OfReal* theWeights = NULL);
@ -123,32 +118,20 @@ public:
DEFINE_STANDARD_RTTIEXT(BSplSLib_Cache,Standard_Transient)
protected:
//! Normalizes the parameter for periodical surfaces
//! \param[in] theDegree degree along selected direction
//! \param[in] theFlatKnots knots with repetitions along selected direction
//! \param[in,out] theParameter the value to be normalized into the knots array
void PeriodicNormalization(const Standard_Integer& theDegree,
const TColStd_Array1OfReal& theFlatKnots,
Standard_Real& theParameter) const;
private:
// copying is prohibited
BSplSLib_Cache (const BSplSLib_Cache&);
void operator = (const BSplSLib_Cache&);
private:
Handle(TColStd_HArray2OfReal) myPolesWeights; ///< array of poles and weights of calculated cache
Standard_Boolean myIsRational; //!< identifies the rationality of Bezier/B-spline surface
BSplCLib_CacheParams myParamsU, myParamsV; //!< cach parameters by U and V directions
Handle(TColStd_HArray2OfReal) myPolesWeights; //!< array of poles and weights of calculated cache
// the array has following structure:
// x11 y11 z11 [w11] x12 y12 z12 [w12] ...
// x21 y21 z21 [w21] x22 y22 z22 [w22] etc
// for non-rational surfaces there is no weight;
// size of array: (max(myDegree)+1) * A*(min(myDegree)+1), where A = 4 or 3
Standard_Boolean myIsRational; ///< identifies the rationality of Bezier/B-spline surface
Standard_Real mySpanStart[2]; ///< parameters (u, v) for the frst point of the span
Standard_Real mySpanLength[2]; ///< lengths of the span along corresponding parameter
Standard_Integer mySpanIndex[2]; ///< indexes of the span on Bezier/B-spline surface
Standard_Integer mySpanIndexMin[2]; ///< minimal indexes of span
Standard_Integer mySpanIndexMax[2]; ///< maximal indexes of span
Standard_Integer myDegree[2]; ///< degrees of Bezier/B-spline for each parameter
Handle(TColStd_HArray1OfReal) myFlatKnots[2]; ///< arrays of knots of Bezier/B-spline
// (used for periodic normalization of parameters, Null for non-periodical splines)
};
DEFINE_STANDARD_HANDLE(BSplSLib_Cache, Standard_Transient)

View File

@ -556,19 +556,17 @@ void Geom2dAdaptor_Curve::RebuildCache(const Standard_Real theParameter) const
Standard_Integer aDeg = aBezier->Degree();
TColStd_Array1OfReal aFlatKnots(BSplCLib::FlatBezierKnots(aDeg), 1, 2 * (aDeg + 1));
if (myCurveCache.IsNull())
myCurveCache = new BSplCLib_Cache(aDeg, aBezier->IsPeriodic(), aFlatKnots,
aBezier->Poles(), aBezier->Weights());
myCurveCache->BuildCache(theParameter, aDeg, aBezier->IsPeriodic(), aFlatKnots,
myCurveCache = new BSplCLib_Cache (aDeg, aBezier->IsPeriodic(), aFlatKnots,
aBezier->Poles(), aBezier->Weights());
myCurveCache->BuildCache (theParameter, aFlatKnots, aBezier->Poles(), aBezier->Weights());
}
else if (myTypeCurve == GeomAbs_BSplineCurve)
{
// Create cache for B-spline
if (myCurveCache.IsNull())
myCurveCache = new BSplCLib_Cache(myBSplineCurve->Degree(), myBSplineCurve->IsPeriodic(),
myCurveCache = new BSplCLib_Cache (myBSplineCurve->Degree(), myBSplineCurve->IsPeriodic(),
myBSplineCurve->KnotSequence(), myBSplineCurve->Poles(), myBSplineCurve->Weights());
myCurveCache->BuildCache(theParameter, myBSplineCurve->Degree(),
myBSplineCurve->IsPeriodic(), myBSplineCurve->KnotSequence(),
myCurveCache->BuildCache (theParameter, myBSplineCurve->KnotSequence(),
myBSplineCurve->Poles(), myBSplineCurve->Weights());
}
}

View File

@ -539,8 +539,7 @@ void GeomAdaptor_Curve::RebuildCache(const Standard_Real theParameter) const
if (myCurveCache.IsNull())
myCurveCache = new BSplCLib_Cache(aDeg, aBezier->IsPeriodic(), aFlatKnots,
aBezier->Poles(), aBezier->Weights());
myCurveCache->BuildCache(theParameter, aDeg, aBezier->IsPeriodic(), aFlatKnots,
aBezier->Poles(), aBezier->Weights());
myCurveCache->BuildCache (theParameter, aFlatKnots, aBezier->Poles(), aBezier->Weights());
}
else if (myTypeCurve == GeomAbs_BSplineCurve)
{
@ -548,8 +547,7 @@ void GeomAdaptor_Curve::RebuildCache(const Standard_Real theParameter) const
if (myCurveCache.IsNull())
myCurveCache = new BSplCLib_Cache(myBSplineCurve->Degree(), myBSplineCurve->IsPeriodic(),
myBSplineCurve->KnotSequence(), myBSplineCurve->Poles(), myBSplineCurve->Weights());
myCurveCache->BuildCache(theParameter, myBSplineCurve->Degree(),
myBSplineCurve->IsPeriodic(), myBSplineCurve->KnotSequence(),
myCurveCache->BuildCache (theParameter, myBSplineCurve->KnotSequence(),
myBSplineCurve->Poles(), myBSplineCurve->Weights());
}
}

View File

@ -670,11 +670,8 @@ void GeomAdaptor_Surface::RebuildCache(const Standard_Real theU,
if (mySurfaceCache.IsNull())
mySurfaceCache = new BSplSLib_Cache(
aDegU, aBezier->IsUPeriodic(), aFlatKnotsU,
aDegV, aBezier->IsVPeriodic(), aFlatKnotsV,
aBezier->Poles(), aBezier->Weights());
mySurfaceCache->BuildCache(theU, theV,
aDegU, aBezier->IsUPeriodic(), aFlatKnotsU,
aDegV, aBezier->IsVPeriodic(), aFlatKnotsV,
aDegV, aBezier->IsVPeriodic(), aFlatKnotsV, aBezier->Weights());
mySurfaceCache->BuildCache (theU, theV, aFlatKnotsU, aFlatKnotsV,
aBezier->Poles(), aBezier->Weights());
}
else if (mySurfaceType == GeomAbs_BSplineSurface)
@ -684,10 +681,8 @@ void GeomAdaptor_Surface::RebuildCache(const Standard_Real theU,
mySurfaceCache = new BSplSLib_Cache(
myBSplineSurface->UDegree(), myBSplineSurface->IsUPeriodic(), myBSplineSurface->UKnotSequence(),
myBSplineSurface->VDegree(), myBSplineSurface->IsVPeriodic(), myBSplineSurface->VKnotSequence(),
myBSplineSurface->Poles(), myBSplineSurface->Weights());
mySurfaceCache->BuildCache(theU, theV,
myBSplineSurface->UDegree(), myBSplineSurface->IsUPeriodic(), myBSplineSurface->UKnotSequence(),
myBSplineSurface->VDegree(), myBSplineSurface->IsVPeriodic(), myBSplineSurface->VKnotSequence(),
myBSplineSurface->Weights());
mySurfaceCache->BuildCache (theU, theV, myBSplineSurface->UKnotSequence(), myBSplineSurface->VKnotSequence(),
myBSplineSurface->Poles(), myBSplineSurface->Weights());
}
}