mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-03 17:56:21 +03:00
0032250: Documentation - pseudographics within gp_Trsf description is not properly escaped
Added @code tags to documentation of several classes in the package gp.
This commit is contained in:
parent
5443dd2ffa
commit
08eda8e30d
@ -43,7 +43,9 @@ class gp_Vec;
|
||||
//! This coordinate system is the "local coordinate system"
|
||||
//! of the ellipse. In this coordinate system, the equation of
|
||||
//! the ellipse is:
|
||||
//! @code
|
||||
//! X*X / (MajorRadius**2) + Y*Y / (MinorRadius**2) = 1.0
|
||||
//! @endcode
|
||||
//! The "main Direction" of the local coordinate system gives
|
||||
//! the normal vector to the plane of the ellipse. This vector
|
||||
//! gives an implicit orientation to the ellipse (definition of the
|
||||
|
@ -44,7 +44,9 @@ class gp_Vec2d;
|
||||
//! of the ellipse. Its orientation (direct or indirect) gives an
|
||||
//! implicit orientation to the ellipse. In this coordinate
|
||||
//! system, the equation of the ellipse is:
|
||||
//! @code
|
||||
//! X*X / (MajorRadius**2) + Y*Y / (MinorRadius**2) = 1.0
|
||||
//! @endcode
|
||||
//! See Also
|
||||
//! gce_MakeElips2d which provides functions for more
|
||||
//! complex ellipse constructions
|
||||
|
@ -41,34 +41,29 @@ class gp_Ax2;
|
||||
|
||||
//! Defines a non-persistent transformation in 3D space.
|
||||
//! This transformation is a general transformation.
|
||||
//! It can be a Trsf from gp, an affinity, or you can define
|
||||
//! It can be a gp_Trsf, an affinity, or you can define
|
||||
//! your own transformation giving the matrix of transformation.
|
||||
//!
|
||||
//! With a Gtrsf you can transform only a triplet of coordinates
|
||||
//! XYZ. It is not possible to transform other geometric objects
|
||||
//! because these transformations can change the nature of non-
|
||||
//! elementary geometric objects.
|
||||
//! The transformation GTrsf can be represented as follow :
|
||||
//!
|
||||
//! V1 V2 V3 T XYZ XYZ
|
||||
//! With a gp_GTrsf you can transform only a triplet of coordinates gp_XYZ.
|
||||
//! It is not possible to transform other geometric objects
|
||||
//! because these transformations can change the nature of non-elementary geometric objects.
|
||||
//! The transformation gp_GTrsf can be represented as follow:
|
||||
//! @code
|
||||
//! V1 V2 V3 T XYZ XYZ
|
||||
//! | a11 a12 a13 a14 | | x | | x'|
|
||||
//! | a21 a22 a23 a24 | | y | | y'|
|
||||
//! | a31 a32 a33 a34 | | z | = | z'|
|
||||
//! | 0 0 0 1 | | 1 | | 1 |
|
||||
//!
|
||||
//! @endcode
|
||||
//! where {V1, V2, V3} define the vectorial part of the
|
||||
//! transformation and T defines the translation part of the
|
||||
//! transformation.
|
||||
//! transformation and T defines the translation part of the transformation.
|
||||
//! Warning
|
||||
//! A GTrsf transformation is only applicable to
|
||||
//! coordinates. Be careful if you apply such a
|
||||
//! transformation to all points of a geometric object, as
|
||||
//! this can change the nature of the object and thus
|
||||
//! render it incoherent!
|
||||
//! Typically, a circle is transformed into an ellipse by an
|
||||
//! affinity transformation. To avoid modifying the nature of
|
||||
//! an object, use a gp_Trsf transformation instead, as
|
||||
//! objects of this class respect the nature of geometric objects.
|
||||
//! A gp_GTrsf transformation is only applicable to coordinates.
|
||||
//! Be careful if you apply such a transformation to all points of a geometric object,
|
||||
//! as this can change the nature of the object and thus render it incoherent!
|
||||
//! Typically, a circle is transformed into an ellipse by an affinity transformation.
|
||||
//! To avoid modifying the nature of an object, use a gp_Trsf transformation instead,
|
||||
//! as objects of this class respect the nature of geometric objects.
|
||||
class gp_GTrsf
|
||||
{
|
||||
public:
|
||||
@ -153,10 +148,12 @@ public:
|
||||
|
||||
//! verify and set the shape of the GTrsf Other or CompoundTrsf
|
||||
//! Ex :
|
||||
//! @code
|
||||
//! myGTrsf.SetValue(row1,col1,val1);
|
||||
//! myGTrsf.SetValue(row2,col2,val2);
|
||||
//! ...
|
||||
//! myGTrsf.SetForm();
|
||||
//! @endcode
|
||||
Standard_EXPORT void SetForm();
|
||||
|
||||
//! Returns the translation part of the GTrsf.
|
||||
@ -188,16 +185,18 @@ public:
|
||||
//! Computes the transformation composed from T and <me>.
|
||||
//! In a C++ implementation you can also write Tcomposed = <me> * T.
|
||||
//! Example :
|
||||
//! GTrsf T1, T2, Tcomp; ...............
|
||||
//! @code
|
||||
//! gp_GTrsf T1, T2, Tcomp; ...............
|
||||
//! //composition :
|
||||
//! Tcomp = T2.Multiplied(T1); // or (Tcomp = T2 * T1)
|
||||
//! // transformation of a point
|
||||
//! XYZ P(10.,3.,4.);
|
||||
//! XYZ P1(P);
|
||||
//! gp_XYZ P(10.,3.,4.);
|
||||
//! gp_XYZ P1(P);
|
||||
//! Tcomp.Transforms(P1); //using Tcomp
|
||||
//! XYZ P2(P);
|
||||
//! gp_XYZ P2(P);
|
||||
//! T1.Transforms(P2); //using T1 then T2
|
||||
//! T2.Transforms(P2); // P1 = P2 !!!
|
||||
//! @endcode
|
||||
Standard_NODISCARD gp_GTrsf Multiplied (const gp_GTrsf& T) const;
|
||||
Standard_NODISCARD gp_GTrsf operator * (const gp_GTrsf& T) const
|
||||
{
|
||||
|
@ -36,34 +36,28 @@ class gp_Ax2d;
|
||||
|
||||
//! Defines a non persistent transformation in 2D space.
|
||||
//! This transformation is a general transformation.
|
||||
//! It can be a Trsf2d from package gp, an affinity, or you can
|
||||
//! define your own transformation giving the corresponding
|
||||
//! matrix of transformation.
|
||||
//! It can be a gp_Trsf2d, an affinity, or you can
|
||||
//! define your own transformation giving the corresponding matrix of transformation.
|
||||
//!
|
||||
//! With a GTrsf2d you can transform only a doublet of coordinates
|
||||
//! XY. It is not possible to transform other geometric objects
|
||||
//! because these transformations can change the nature of non-
|
||||
//! elementary geometric objects.
|
||||
//! A GTrsf2d is represented with a 2 rows * 3 columns matrix :
|
||||
//!
|
||||
//! V1 V2 T XY XY
|
||||
//! With a gp_GTrsf2d you can transform only a doublet of coordinates gp_XY.
|
||||
//! It is not possible to transform other geometric objects
|
||||
//! because these transformations can change the nature of non-elementary geometric objects.
|
||||
//! A gp_GTrsf2d is represented with a 2 rows * 3 columns matrix:
|
||||
//! @code
|
||||
//! V1 V2 T XY XY
|
||||
//! | a11 a12 a14 | | x | | x'|
|
||||
//! | a21 a22 a24 | | y | | y'|
|
||||
//! | a21 a22 a24 | | y | = | y'|
|
||||
//! | 0 0 1 | | 1 | | 1 |
|
||||
//!
|
||||
//! @endcode
|
||||
//! where {V1, V2} defines the vectorial part of the
|
||||
//! transformation and T defines the translation part of
|
||||
//! the transformation.
|
||||
//! transformation and T defines the translation part of the transformation.
|
||||
//! Warning
|
||||
//! A GTrsf2d transformation is only applicable on
|
||||
//! coordinates. Be careful if you apply such a
|
||||
//! transformation to all the points of a geometric object,
|
||||
//! as this can change the nature of the object and thus
|
||||
//! render it incoherent!
|
||||
//! Typically, a circle is transformed into an ellipse by an
|
||||
//! affinity transformation. To avoid modifying the nature of
|
||||
//! an object, use a gp_Trsf2d transformation instead, as
|
||||
//! objects of this class respect the nature of geometric objects.
|
||||
//! A gp_GTrsf2d transformation is only applicable on coordinates.
|
||||
//! Be careful if you apply such a transformation to all the points of a geometric object,
|
||||
//! as this can change the nature of the object and thus render it incoherent!
|
||||
//! Typically, a circle is transformed into an ellipse by an affinity transformation.
|
||||
//! To avoid modifying the nature of an object, use a gp_Trsf2d transformation instead,
|
||||
//! as objects of this class respect the nature of geometric objects.
|
||||
class gp_GTrsf2d
|
||||
{
|
||||
public:
|
||||
@ -98,7 +92,7 @@ public:
|
||||
//! Raises OutOfRange if Row < 1 or Row > 2 or Col < 1 or Col > 3
|
||||
void SetValue (const Standard_Integer Row, const Standard_Integer Col, const Standard_Real Value);
|
||||
|
||||
//! Replacesthe translation part of this
|
||||
//! Replaces the translation part of this
|
||||
//! transformation by the coordinates of the number pair Coord.
|
||||
Standard_EXPORT void SetTranslationPart (const gp_XY& Coord);
|
||||
|
||||
@ -162,16 +156,18 @@ public:
|
||||
//! Computes the transformation composed with T and <me>.
|
||||
//! In a C++ implementation you can also write Tcomposed = <me> * T.
|
||||
//! Example :
|
||||
//! GTrsf2d T1, T2, Tcomp; ...............
|
||||
//! @code
|
||||
//! gp_GTrsf2d T1, T2, Tcomp; ...............
|
||||
//! //composition :
|
||||
//! Tcomp = T2.Multiplied(T1); // or (Tcomp = T2 * T1)
|
||||
//! // transformation of a point
|
||||
//! XY P(10.,3.);
|
||||
//! XY P1(P);
|
||||
//! gp_XY P(10.,3.);
|
||||
//! gp_XY P1(P);
|
||||
//! Tcomp.Transforms(P1); //using Tcomp
|
||||
//! XY P2(P);
|
||||
//! gp_XY P2(P);
|
||||
//! T1.Transforms(P2); //using T1 then T2
|
||||
//! T2.Transforms(P2); // P1 = P2 !!!
|
||||
//! @endcode
|
||||
Standard_NODISCARD gp_GTrsf2d Multiplied (const gp_GTrsf2d& T) const;
|
||||
Standard_NODISCARD gp_GTrsf2d operator * (const gp_GTrsf2d& T) const
|
||||
{
|
||||
|
@ -57,7 +57,7 @@ class gp_Vec;
|
||||
//! and in it, the respective positions of the three branches of
|
||||
//! hyperbolas constructed with the functions OtherBranch,
|
||||
//! ConjugateBranch1, and ConjugateBranch2:
|
||||
//!
|
||||
//! @code
|
||||
//! ^YAxis
|
||||
//! |
|
||||
//! FirstConjugateBranch
|
||||
@ -69,6 +69,7 @@ class gp_Vec;
|
||||
//! |
|
||||
//! SecondConjugateBranch
|
||||
//! | ^YAxis
|
||||
//! @endcode
|
||||
//! Warning
|
||||
//! The major radius can be less than the minor radius.
|
||||
//! See Also
|
||||
|
@ -53,6 +53,7 @@ class gp_Vec2d;
|
||||
//! and in it, the respective positions of the three branches of
|
||||
//! hyperbolas constructed with the functions OtherBranch,
|
||||
//! ConjugateBranch1, and ConjugateBranch2:
|
||||
//! @code
|
||||
//! ^YAxis
|
||||
//! |
|
||||
//! FirstConjugateBranch
|
||||
@ -64,7 +65,7 @@ class gp_Vec2d;
|
||||
//! |
|
||||
//! SecondConjugateBranch
|
||||
//! |
|
||||
//!
|
||||
//! @endcode
|
||||
//! Warning
|
||||
//! The major radius can be less than the minor radius.
|
||||
//! See Also
|
||||
|
@ -72,9 +72,11 @@ public:
|
||||
|
||||
|
||||
//! Modifies the main diagonal of the matrix.
|
||||
//! @code
|
||||
//! <me>.Value (1, 1) = X1
|
||||
//! <me>.Value (2, 2) = X2
|
||||
//! <me>.Value (3, 3) = X3
|
||||
//! @endcode
|
||||
//! The other coefficients of the matrix are not modified.
|
||||
void SetDiagonal (const Standard_Real X1, const Standard_Real X2, const Standard_Real X3);
|
||||
|
||||
@ -107,9 +109,11 @@ public:
|
||||
|
||||
//! Modifies the matrix so that it represents
|
||||
//! a scaling transformation, where S is the scale factor. :
|
||||
//! | S 0.0 0.0 |
|
||||
//! @code
|
||||
//! | S 0.0 0.0 |
|
||||
//! <me> = | 0.0 S 0.0 |
|
||||
//! | 0.0 0.0 S |
|
||||
//! | 0.0 0.0 S |
|
||||
//! @endcode
|
||||
void SetScale (const Standard_Real S);
|
||||
|
||||
//! Assigns <Value> to the coefficient of row Row, column Col of this matrix.
|
||||
|
@ -56,8 +56,10 @@ public:
|
||||
|
||||
|
||||
//! Modifies the main diagonal of the matrix.
|
||||
//! @code
|
||||
//! <me>.Value (1, 1) = X1
|
||||
//! <me>.Value (2, 2) = X2
|
||||
//! @endcode
|
||||
//! The other coefficients of the matrix are not modified.
|
||||
void SetDiagonal (const Standard_Real X1, const Standard_Real X2);
|
||||
|
||||
@ -65,7 +67,7 @@ public:
|
||||
void SetIdentity();
|
||||
|
||||
|
||||
//! Modifies this matrix, so that it representso a rotation. Ang is the angular
|
||||
//! Modifies this matrix, so that it represents a rotation. Ang is the angular
|
||||
//! value in radian of the rotation.
|
||||
void SetRotation (const Standard_Real Ang);
|
||||
|
||||
@ -79,8 +81,10 @@ public:
|
||||
|
||||
//! Modifies the matrix such that it
|
||||
//! represents a scaling transformation, where S is the scale factor :
|
||||
//! | S 0.0 |
|
||||
//! @code
|
||||
//! | S 0.0 |
|
||||
//! <me> = | 0.0 S |
|
||||
//! @endcode
|
||||
void SetScale (const Standard_Real S);
|
||||
|
||||
//! Assigns <Value> to the coefficient of row Row, column Col of this matrix.
|
||||
@ -135,7 +139,9 @@ public:
|
||||
|
||||
//! Computes the sum of this matrix and the matrix
|
||||
//! Other.for each coefficient of the matrix :
|
||||
//! @code
|
||||
//! <me>.Coef(i,j) + <Other>.Coef(i,j)
|
||||
//! @endcode
|
||||
//! Note:
|
||||
//! - operator += assigns the result to this matrix, while
|
||||
//! - operator + creates a new one.
|
||||
@ -212,7 +218,9 @@ public:
|
||||
|
||||
|
||||
//! Computes for each coefficient of the matrix :
|
||||
//! @code
|
||||
//! <me>.Coef(i,j) - <Other>.Coef(i,j)
|
||||
//! @endcode
|
||||
Standard_NODISCARD gp_Mat2d Subtracted (const gp_Mat2d& Other) const;
|
||||
Standard_NODISCARD gp_Mat2d operator - (const gp_Mat2d& Other) const
|
||||
{
|
||||
|
@ -45,7 +45,9 @@ class gp_Vec;
|
||||
//! coordinate system define the plane of the parabola.
|
||||
//! The equation of the parabola in this coordinate system,
|
||||
//! which is the "local coordinate system" of the parabola, is:
|
||||
//! @code
|
||||
//! Y**2 = (2*P) * X.
|
||||
//! @endcode
|
||||
//! where P, referred to as the parameter of the parabola, is
|
||||
//! the distance between the focus and the directrix (P is
|
||||
//! twice the focal length).
|
||||
|
@ -44,7 +44,9 @@ class gp_Vec2d;
|
||||
//! of the parabola. Its orientation (direct or indirect sense)
|
||||
//! gives an implicit orientation to the parabola.
|
||||
//! In this coordinate system, the equation for the parabola is:
|
||||
//! @code
|
||||
//! Y**2 = (2*P) * X.
|
||||
//! @endcode
|
||||
//! where P, referred to as the parameter of the parabola, is
|
||||
//! the distance between the focus and the directrix (P is
|
||||
//! twice the focal length).
|
||||
@ -126,7 +128,9 @@ public:
|
||||
|
||||
//! Computes the coefficients of the implicit equation of the parabola
|
||||
//! (in WCS - World Coordinate System).
|
||||
//! @code
|
||||
//! A * (X**2) + B * (Y**2) + 2*C*(X*Y) + 2*D*X + 2*E*Y + F = 0.
|
||||
//! @endcode
|
||||
Standard_EXPORT void Coefficients (Standard_Real& A, Standard_Real& B,
|
||||
Standard_Real& C, Standard_Real& D,
|
||||
Standard_Real& E, Standard_Real& F) const;
|
||||
|
@ -82,13 +82,17 @@ public:
|
||||
|
||||
|
||||
//! Creates a plane from its cartesian equation :
|
||||
//! @code
|
||||
//! A * X + B * Y + C * Z + D = 0.0
|
||||
//! @endcode
|
||||
//! Raises ConstructionError if Sqrt (A*A + B*B + C*C) <= Resolution from gp.
|
||||
Standard_EXPORT gp_Pln(const Standard_Real A, const Standard_Real B, const Standard_Real C, const Standard_Real D);
|
||||
|
||||
|
||||
//! Returns the coefficients of the plane's cartesian equation :
|
||||
//! @code
|
||||
//! A * X + B * Y + C * Z + D = 0.
|
||||
//! @endcode
|
||||
void Coefficients (Standard_Real& A, Standard_Real& B, Standard_Real& C, Standard_Real& D) const;
|
||||
|
||||
//! Modifies this plane, by redefining its local coordinate system so that
|
||||
|
@ -28,12 +28,12 @@ class gp_Vec;
|
||||
class gp_Mat;
|
||||
|
||||
|
||||
//! Represents operation of rotation in 3d space as queternion
|
||||
//! Represents operation of rotation in 3d space as quaternion
|
||||
//! and implements operations with rotations basing on
|
||||
//! quaternion mathematics.
|
||||
//!
|
||||
//! In addition, provides methods for conversion to and from other
|
||||
//! representatons of rotation (3*3 matrix, vector and
|
||||
//! representations of rotation (3*3 matrix, vector and
|
||||
//! angle, Euler angles)
|
||||
class gp_Quaternion
|
||||
{
|
||||
@ -191,25 +191,29 @@ Standard_NODISCARD gp_Quaternion operator - (const gp_Quaternion& theOther) cons
|
||||
}
|
||||
|
||||
//! Multiply function - work the same as Matrices multiplying.
|
||||
//! @code
|
||||
//! qq' = (cross(v,v') + wv' + w'v, ww' - dot(v,v'))
|
||||
//! @endcode
|
||||
//! Result is rotation combination: q' than q (here q=this, q'=theQ).
|
||||
//! Notices than:
|
||||
//! Notices that:
|
||||
//! @code
|
||||
//! qq' != q'q;
|
||||
//! qq^-1 = q;
|
||||
//! @endcode
|
||||
Standard_NODISCARD gp_Quaternion Multiplied (const gp_Quaternion& theOther) const;
|
||||
Standard_NODISCARD gp_Quaternion operator * (const gp_Quaternion& theOther) const
|
||||
{
|
||||
return Multiplied(theOther);
|
||||
}
|
||||
|
||||
//! Adds componnets of other quaternion; result is "rotations mix"
|
||||
//! Adds components of other quaternion; result is "rotations mix"
|
||||
void Add (const gp_Quaternion& theOther);
|
||||
void operator += (const gp_Quaternion& theOther)
|
||||
{
|
||||
Add(theOther);
|
||||
}
|
||||
|
||||
//! Subtracts componnets of other quaternion; result is "rotations mix"
|
||||
//! Subtracts components of other quaternion; result is "rotations mix"
|
||||
void Subtract (const gp_Quaternion& theOther);
|
||||
void operator -= (const gp_Quaternion& theOther)
|
||||
{
|
||||
|
@ -84,14 +84,16 @@ public:
|
||||
void SetRadius (const Standard_Real R);
|
||||
|
||||
|
||||
//! Computes the aera of the sphere.
|
||||
//! Computes the area of the sphere.
|
||||
Standard_Real Area() const;
|
||||
|
||||
|
||||
//! Computes the coefficients of the implicit equation of the quadric
|
||||
//! in the absolute cartesian coordinates system :
|
||||
//! @code
|
||||
//! A1.X**2 + A2.Y**2 + A3.Z**2 + 2.(B1.X.Y + B2.X.Z + B3.Y.Z) +
|
||||
//! 2.(C1.X + C2.Y + C3.Z) + D = 0.0
|
||||
//! @endcode
|
||||
Standard_EXPORT void Coefficients (Standard_Real& A1, Standard_Real& A2, Standard_Real& A3, Standard_Real& B1, Standard_Real& B2, Standard_Real& B3, Standard_Real& C1, Standard_Real& C2, Standard_Real& C3, Standard_Real& D) const;
|
||||
|
||||
//! Reverses the U parametrization of the sphere
|
||||
|
@ -130,6 +130,7 @@ public:
|
||||
|
||||
//! Computes the coefficients of the implicit equation of the surface
|
||||
//! in the absolute Cartesian coordinate system:
|
||||
//! @code
|
||||
//! Coef(1) * X^4 + Coef(2) * Y^4 + Coef(3) * Z^4 +
|
||||
//! Coef(4) * X^3 * Y + Coef(5) * X^3 * Z + Coef(6) * Y^3 * X +
|
||||
//! Coef(7) * Y^3 * Z + Coef(8) * Z^3 * X + Coef(9) * Z^3 * Y +
|
||||
@ -144,6 +145,7 @@ public:
|
||||
//! Coef(29) * X * Y + Coef(30) * X * Z + Coef(31) * Y * Z +
|
||||
//! Coef(32) * X + Coef(33) * Y + Coef(34) * Z +
|
||||
//! Coef(35) = 0.0
|
||||
//! @endcode
|
||||
//! Raises DimensionError if the length of Coef is lower than 35.
|
||||
Standard_EXPORT void Coefficients (TColStd_Array1OfReal& Coef) const;
|
||||
|
||||
|
@ -50,13 +50,13 @@ class gp_Vec;
|
||||
//! previous elementary transformations using the method
|
||||
//! Multiply.
|
||||
//! The transformations can be represented as follow :
|
||||
//!
|
||||
//! V1 V2 V3 T XYZ XYZ
|
||||
//! @code
|
||||
//! V1 V2 V3 T XYZ XYZ
|
||||
//! | a11 a12 a13 a14 | | x | | x'|
|
||||
//! | a21 a22 a23 a24 | | y | | y'|
|
||||
//! | a31 a32 a33 a34 | | z | = | z'|
|
||||
//! | 0 0 0 1 | | 1 | | 1 |
|
||||
//!
|
||||
//! @endcode
|
||||
//! where {V1, V2, V3} defines the vectorial part of the
|
||||
//! transformation and T defines the translation part of the
|
||||
//! transformation.
|
||||
@ -156,16 +156,16 @@ public:
|
||||
//! The transformation is from the coordinate
|
||||
//! system "FromSystem1" to the coordinate system "ToSystem2".
|
||||
//! Example :
|
||||
//! In a C++ implementation :
|
||||
//! Real x1, y1, z1; // are the coordinates of a point in the
|
||||
//! // local system FromSystem1
|
||||
//! Real x2, y2, z2; // are the coordinates of a point in the
|
||||
//! // local system ToSystem2
|
||||
//! @code
|
||||
//! gp_Ax3 FromSystem1, ToSystem2;
|
||||
//! double x1, y1, z1; // are the coordinates of a point in the local system FromSystem1
|
||||
//! double x2, y2, z2; // are the coordinates of a point in the local system ToSystem2
|
||||
//! gp_Pnt P1 (x1, y1, z1)
|
||||
//! Trsf T;
|
||||
//! gp_Trsf T;
|
||||
//! T.SetTransformation (FromSystem1, ToSystem2);
|
||||
//! gp_Pnt P2 = P1.Transformed (T);
|
||||
//! P2.Coord (x2, y2, z2);
|
||||
//! @endcode
|
||||
Standard_EXPORT void SetTransformation (const gp_Ax3& FromSystem1, const gp_Ax3& ToSystem2);
|
||||
|
||||
//! Modifies this transformation so that it transforms the
|
||||
@ -174,7 +174,9 @@ public:
|
||||
//! are relative to a target coordinate system, but which
|
||||
//! represent the same point
|
||||
//! The transformation is from the default coordinate system
|
||||
//! @code
|
||||
//! {P(0.,0.,0.), VX (1.,0.,0.), VY (0.,1.,0.), VZ (0., 0. ,1.) }
|
||||
//! @endcode
|
||||
//! to the local coordinate system defined with the Ax3 ToSystem.
|
||||
//! Use in the same way as the previous method. FromSystem1 is
|
||||
//! defaulted to the absolute coordinate system.
|
||||
@ -206,11 +208,11 @@ public:
|
||||
//! Sets the coefficients of the transformation. The
|
||||
//! transformation of the point x,y,z is the point
|
||||
//! x',y',z' with :
|
||||
//!
|
||||
//! @code
|
||||
//! x' = a11 x + a12 y + a13 z + a14
|
||||
//! y' = a21 x + a22 y + a23 z + a24
|
||||
//! z' = a31 x + a32 y + a33 z + a34
|
||||
//!
|
||||
//! @endcode
|
||||
//! The method Value(i,j) will return aij.
|
||||
//! Raises ConstructionError if the determinant of the aij is null.
|
||||
//! The matrix is orthogonalized before future using.
|
||||
@ -279,12 +281,14 @@ public:
|
||||
//! Computes the transformation composed with T and <me>.
|
||||
//! In a C++ implementation you can also write Tcomposed = <me> * T.
|
||||
//! Example :
|
||||
//! Trsf T1, T2, Tcomp; ...............
|
||||
//! @code
|
||||
//! gp_Trsf T1, T2, Tcomp; ...............
|
||||
//! Tcomp = T2.Multiplied(T1); // or (Tcomp = T2 * T1)
|
||||
//! Pnt P1(10.,3.,4.);
|
||||
//! Pnt P2 = P1.Transformed(Tcomp); //using Tcomp
|
||||
//! Pnt P3 = P1.Transformed(T1); //using T1 then T2
|
||||
//! gp_Pnt P1(10.,3.,4.);
|
||||
//! gp_Pnt P2 = P1.Transformed(Tcomp); // using Tcomp
|
||||
//! gp_Pnt P3 = P1.Transformed(T1); // using T1 then T2
|
||||
//! P3.Transform(T2); // P3 = P2 !!!
|
||||
//! @endcode
|
||||
Standard_NODISCARD gp_Trsf Inverted() const;
|
||||
|
||||
Standard_NODISCARD gp_Trsf Multiplied (const gp_Trsf& T) const;
|
||||
|
@ -39,17 +39,17 @@ class gp_Mat2d;
|
||||
|
||||
//! Defines a non-persistent transformation in 2D space.
|
||||
//! The following transformations are implemented :
|
||||
//! . Translation, Rotation, Scale
|
||||
//! . Symmetry with respect to a point and a line.
|
||||
//! - Translation, Rotation, Scale
|
||||
//! - Symmetry with respect to a point and a line.
|
||||
//! Complex transformations can be obtained by combining the
|
||||
//! previous elementary transformations using the method Multiply.
|
||||
//! The transformations can be represented as follow :
|
||||
//!
|
||||
//! V1 V2 T XY XY
|
||||
//! @code
|
||||
//! V1 V2 T XY XY
|
||||
//! | a11 a12 a13 | | x | | x'|
|
||||
//! | a21 a22 a23 | | y | | y'|
|
||||
//! | 0 0 1 | | 1 | | 1 |
|
||||
//!
|
||||
//! @endcode
|
||||
//! where {V1, V2} defines the vectorial part of the transformation
|
||||
//! and T defines the translation part of the transformation.
|
||||
//! This transformation never change the nature of the objects.
|
||||
@ -206,10 +206,10 @@ void operator *= (const gp_Trsf2d& T)
|
||||
//! Sets the coefficients of the transformation. The
|
||||
//! transformation of the point x,y is the point
|
||||
//! x',y' with :
|
||||
//!
|
||||
//! @code
|
||||
//! x' = a11 x + a12 y + a13
|
||||
//! y' = a21 x + a22 y + a23
|
||||
//!
|
||||
//! @endcode
|
||||
//! The method Value(i,j) will return aij.
|
||||
//! Raises ConstructionError if the determinant of the aij is null.
|
||||
//! If the matrix as not a uniform scale it will be orthogonalized before future using.
|
||||
|
@ -98,8 +98,10 @@ public:
|
||||
Standard_EXPORT Standard_Boolean IsEqual (const gp_XY& Other, const Standard_Real Tolerance) const;
|
||||
|
||||
//! Computes the sum of this number pair and number pair Other
|
||||
//! @code
|
||||
//! <me>.X() = <me>.X() + Other.X()
|
||||
//! <me>.Y() = <me>.Y() + Other.Y()
|
||||
//! @endcode
|
||||
void Add (const gp_XY& Other);
|
||||
void operator += (const gp_XY& Other)
|
||||
{
|
||||
@ -107,8 +109,10 @@ public:
|
||||
}
|
||||
|
||||
//! Computes the sum of this number pair and number pair Other
|
||||
//! @code
|
||||
//! new.X() = <me>.X() + Other.X()
|
||||
//! new.Y() = <me>.Y() + Other.Y()
|
||||
//! @endcode
|
||||
Standard_NODISCARD gp_XY Added (const gp_XY& Other) const;
|
||||
Standard_NODISCARD gp_XY operator + (const gp_XY& Other) const
|
||||
{
|
||||
@ -116,7 +120,9 @@ public:
|
||||
}
|
||||
|
||||
|
||||
//! Real D = <me>.X() * Other.Y() - <me>.Y() * Other.X()
|
||||
//! @code
|
||||
//! double D = <me>.X() * Other.Y() - <me>.Y() * Other.X()
|
||||
//! @endcode
|
||||
Standard_NODISCARD Standard_Real Crossed (const gp_XY& Right) const;
|
||||
Standard_NODISCARD Standard_Real operator ^ (const gp_XY& Right) const
|
||||
{
|
||||
@ -155,71 +161,84 @@ public:
|
||||
}
|
||||
|
||||
|
||||
//! @code
|
||||
//! <me>.X() = <me>.X() * Scalar;
|
||||
//! <me>.Y() = <me>.Y() * Scalar;
|
||||
//! @endcode
|
||||
void Multiply (const Standard_Real Scalar);
|
||||
void operator *= (const Standard_Real Scalar)
|
||||
{
|
||||
Multiply(Scalar);
|
||||
}
|
||||
|
||||
|
||||
//! @code
|
||||
//! <me>.X() = <me>.X() * Other.X();
|
||||
//! <me>.Y() = <me>.Y() * Other.Y();
|
||||
//! @endcode
|
||||
void Multiply (const gp_XY& Other);
|
||||
void operator *= (const gp_XY& Other)
|
||||
{
|
||||
Multiply(Other);
|
||||
}
|
||||
|
||||
|
||||
//! @code
|
||||
//! <me> = Matrix * <me>
|
||||
//! @endcode
|
||||
void Multiply (const gp_Mat2d& Matrix);
|
||||
void operator *= (const gp_Mat2d& Matrix)
|
||||
{
|
||||
Multiply(Matrix);
|
||||
}
|
||||
|
||||
|
||||
//! @code
|
||||
//! New.X() = <me>.X() * Scalar;
|
||||
//! New.Y() = <me>.Y() * Scalar;
|
||||
//! @endcode
|
||||
Standard_NODISCARD gp_XY Multiplied (const Standard_Real Scalar) const;
|
||||
Standard_NODISCARD gp_XY operator * (const Standard_Real Scalar) const
|
||||
{
|
||||
return Multiplied(Scalar);
|
||||
}
|
||||
|
||||
|
||||
//! @code
|
||||
//! new.X() = <me>.X() * Other.X();
|
||||
//! new.Y() = <me>.Y() * Other.Y();
|
||||
//! @endcode
|
||||
Standard_NODISCARD gp_XY Multiplied (const gp_XY& Other) const;
|
||||
|
||||
|
||||
//! @code
|
||||
//! New = Matrix * <me>
|
||||
//! @endcode
|
||||
Standard_NODISCARD gp_XY Multiplied (const gp_Mat2d& Matrix) const;
|
||||
Standard_NODISCARD gp_XY operator * (const gp_Mat2d& Matrix) const
|
||||
{
|
||||
return Multiplied(Matrix);
|
||||
}
|
||||
|
||||
|
||||
//! @code
|
||||
//! <me>.X() = <me>.X()/ <me>.Modulus()
|
||||
//! <me>.Y() = <me>.Y()/ <me>.Modulus()
|
||||
//! @endcode
|
||||
//! Raises ConstructionError if <me>.Modulus() <= Resolution from gp
|
||||
void Normalize();
|
||||
|
||||
|
||||
//! @code
|
||||
//! New.X() = <me>.X()/ <me>.Modulus()
|
||||
//! New.Y() = <me>.Y()/ <me>.Modulus()
|
||||
//! @endcode
|
||||
//! Raises ConstructionError if <me>.Modulus() <= Resolution from gp
|
||||
Standard_NODISCARD gp_XY Normalized() const;
|
||||
|
||||
|
||||
//! @code
|
||||
//! <me>.X() = -<me>.X()
|
||||
//! <me>.Y() = -<me>.Y()
|
||||
//! @endcode
|
||||
void Reverse();
|
||||
|
||||
|
||||
//! @code
|
||||
//! New.X() = -<me>.X()
|
||||
//! New.Y() = -<me>.Y()
|
||||
//! @endcode
|
||||
Standard_NODISCARD gp_XY Reversed() const;
|
||||
Standard_NODISCARD gp_XY operator -() const
|
||||
{
|
||||
@ -229,39 +248,49 @@ public:
|
||||
|
||||
//! Computes the following linear combination and
|
||||
//! assigns the result to this number pair:
|
||||
//! @code
|
||||
//! A1 * XY1 + A2 * XY2
|
||||
//! @endcode
|
||||
void SetLinearForm (const Standard_Real A1, const gp_XY& XY1, const Standard_Real A2, const gp_XY& XY2);
|
||||
|
||||
|
||||
//! -- Computes the following linear combination and
|
||||
//! assigns the result to this number pair:
|
||||
//! @code
|
||||
//! A1 * XY1 + A2 * XY2 + XY3
|
||||
//! @endcode
|
||||
void SetLinearForm (const Standard_Real A1, const gp_XY& XY1, const Standard_Real A2, const gp_XY& XY2, const gp_XY& XY3);
|
||||
|
||||
|
||||
//! Computes the following linear combination and
|
||||
//! assigns the result to this number pair:
|
||||
//! @code
|
||||
//! A1 * XY1 + XY2
|
||||
//! @endcode
|
||||
void SetLinearForm (const Standard_Real A1, const gp_XY& XY1, const gp_XY& XY2);
|
||||
|
||||
|
||||
//! Computes the following linear combination and
|
||||
//! assigns the result to this number pair:
|
||||
//! @code
|
||||
//! XY1 + XY2
|
||||
//! @endcode
|
||||
void SetLinearForm (const gp_XY& XY1, const gp_XY& XY2);
|
||||
|
||||
|
||||
//! @code
|
||||
//! <me>.X() = <me>.X() - Other.X()
|
||||
//! <me>.Y() = <me>.Y() - Other.Y()
|
||||
//! @endcode
|
||||
void Subtract (const gp_XY& Right);
|
||||
void operator -= (const gp_XY& Right)
|
||||
{
|
||||
Subtract(Right);
|
||||
}
|
||||
|
||||
|
||||
//! @code
|
||||
//! new.X() = <me>.X() - Other.X()
|
||||
//! new.Y() = <me>.Y() - Other.Y()
|
||||
//! @endcode
|
||||
Standard_NODISCARD gp_XY Subtracted (const gp_XY& Right) const;
|
||||
Standard_NODISCARD gp_XY operator - (const gp_XY& Right) const
|
||||
{
|
||||
|
@ -119,40 +119,44 @@ public:
|
||||
//! abs(<me>.Z() - Other.Z()) <= Tolerance.
|
||||
Standard_EXPORT Standard_Boolean IsEqual (const gp_XYZ& Other, const Standard_Real Tolerance) const;
|
||||
|
||||
|
||||
//! @code
|
||||
//! <me>.X() = <me>.X() + Other.X()
|
||||
//! <me>.Y() = <me>.Y() + Other.Y()
|
||||
//! <me>.Z() = <me>.Z() + Other.Z()
|
||||
//! @endcode
|
||||
void Add (const gp_XYZ& Other);
|
||||
void operator += (const gp_XYZ& Other)
|
||||
{
|
||||
Add(Other);
|
||||
}
|
||||
|
||||
|
||||
//! @code
|
||||
//! new.X() = <me>.X() + Other.X()
|
||||
//! new.Y() = <me>.Y() + Other.Y()
|
||||
//! new.Z() = <me>.Z() + Other.Z()
|
||||
//! @endcode
|
||||
Standard_NODISCARD gp_XYZ Added (const gp_XYZ& Other) const;
|
||||
Standard_NODISCARD gp_XYZ operator + (const gp_XYZ& Other) const
|
||||
{
|
||||
return Added(Other);
|
||||
}
|
||||
|
||||
|
||||
//! @code
|
||||
//! <me>.X() = <me>.Y() * Other.Z() - <me>.Z() * Other.Y()
|
||||
//! <me>.Y() = <me>.Z() * Other.X() - <me>.X() * Other.Z()
|
||||
//! <me>.Z() = <me>.X() * Other.Y() - <me>.Y() * Other.X()
|
||||
//! @endcode
|
||||
void Cross (const gp_XYZ& Right);
|
||||
void operator ^= (const gp_XYZ& Right)
|
||||
{
|
||||
Cross(Right);
|
||||
}
|
||||
|
||||
|
||||
//! @code
|
||||
//! new.X() = <me>.Y() * Other.Z() - <me>.Z() * Other.Y()
|
||||
//! new.Y() = <me>.Z() * Other.X() - <me>.X() * Other.Z()
|
||||
//! new.Z() = <me>.X() * Other.Y() - <me>.Y() * Other.X()
|
||||
//! @endcode
|
||||
Standard_NODISCARD gp_XYZ Crossed (const gp_XYZ& Right) const;
|
||||
Standard_NODISCARD gp_XYZ operator ^ (const gp_XYZ& Right) const
|
||||
{
|
||||
@ -200,97 +204,111 @@ public:
|
||||
|
||||
//! computes the triple scalar product
|
||||
Standard_Real DotCross (const gp_XYZ& Coord1, const gp_XYZ& Coord2) const;
|
||||
|
||||
|
||||
//! @code
|
||||
//! <me>.X() = <me>.X() * Scalar;
|
||||
//! <me>.Y() = <me>.Y() * Scalar;
|
||||
//! <me>.Z() = <me>.Z() * Scalar;
|
||||
//! @endcode
|
||||
void Multiply (const Standard_Real Scalar);
|
||||
void operator *= (const Standard_Real Scalar)
|
||||
{
|
||||
Multiply(Scalar);
|
||||
}
|
||||
|
||||
|
||||
//! @code
|
||||
//! <me>.X() = <me>.X() * Other.X();
|
||||
//! <me>.Y() = <me>.Y() * Other.Y();
|
||||
//! <me>.Z() = <me>.Z() * Other.Z();
|
||||
//! @endcode
|
||||
void Multiply (const gp_XYZ& Other);
|
||||
void operator *= (const gp_XYZ& Other)
|
||||
{
|
||||
Multiply(Other);
|
||||
}
|
||||
|
||||
|
||||
//! @code
|
||||
//! <me> = Matrix * <me>
|
||||
//! @endcode
|
||||
void Multiply (const gp_Mat& Matrix);
|
||||
void operator *= (const gp_Mat& Matrix)
|
||||
{
|
||||
Multiply(Matrix);
|
||||
}
|
||||
|
||||
|
||||
//! @code
|
||||
//! New.X() = <me>.X() * Scalar;
|
||||
//! New.Y() = <me>.Y() * Scalar;
|
||||
//! New.Z() = <me>.Z() * Scalar;
|
||||
//! @endcode
|
||||
Standard_NODISCARD gp_XYZ Multiplied (const Standard_Real Scalar) const;
|
||||
Standard_NODISCARD gp_XYZ operator * (const Standard_Real Scalar) const
|
||||
{
|
||||
return Multiplied(Scalar);
|
||||
}
|
||||
|
||||
|
||||
//! @code
|
||||
//! new.X() = <me>.X() * Other.X();
|
||||
//! new.Y() = <me>.Y() * Other.Y();
|
||||
//! new.Z() = <me>.Z() * Other.Z();
|
||||
//! @endcode
|
||||
Standard_NODISCARD gp_XYZ Multiplied (const gp_XYZ& Other) const;
|
||||
|
||||
|
||||
//! @code
|
||||
//! New = Matrix * <me>
|
||||
//! @endcode
|
||||
Standard_NODISCARD gp_XYZ Multiplied (const gp_Mat& Matrix) const;
|
||||
Standard_NODISCARD gp_XYZ operator * (const gp_Mat& Matrix) const
|
||||
{
|
||||
return Multiplied(Matrix);
|
||||
}
|
||||
|
||||
|
||||
//! @code
|
||||
//! <me>.X() = <me>.X()/ <me>.Modulus()
|
||||
//! <me>.Y() = <me>.Y()/ <me>.Modulus()
|
||||
//! <me>.Z() = <me>.Z()/ <me>.Modulus()
|
||||
//! @endcode
|
||||
//! Raised if <me>.Modulus() <= Resolution from gp
|
||||
void Normalize();
|
||||
|
||||
|
||||
//! @code
|
||||
//! New.X() = <me>.X()/ <me>.Modulus()
|
||||
//! New.Y() = <me>.Y()/ <me>.Modulus()
|
||||
//! New.Z() = <me>.Z()/ <me>.Modulus()
|
||||
//! @endcode
|
||||
//! Raised if <me>.Modulus() <= Resolution from gp
|
||||
Standard_NODISCARD gp_XYZ Normalized() const;
|
||||
|
||||
|
||||
//! @code
|
||||
//! <me>.X() = -<me>.X()
|
||||
//! <me>.Y() = -<me>.Y()
|
||||
//! <me>.Z() = -<me>.Z()
|
||||
//! @endcode
|
||||
void Reverse();
|
||||
|
||||
|
||||
//! @code
|
||||
//! New.X() = -<me>.X()
|
||||
//! New.Y() = -<me>.Y()
|
||||
//! New.Z() = -<me>.Z()
|
||||
//! @endcode
|
||||
Standard_NODISCARD gp_XYZ Reversed() const;
|
||||
|
||||
|
||||
//! @code
|
||||
//! <me>.X() = <me>.X() - Other.X()
|
||||
//! <me>.Y() = <me>.Y() - Other.Y()
|
||||
//! <me>.Z() = <me>.Z() - Other.Z()
|
||||
//! @endcode
|
||||
void Subtract (const gp_XYZ& Right);
|
||||
void operator -= (const gp_XYZ& Right)
|
||||
{
|
||||
Subtract(Right);
|
||||
}
|
||||
|
||||
|
||||
//! @code
|
||||
//! new.X() = <me>.X() - Other.X()
|
||||
//! new.Y() = <me>.Y() - Other.Y()
|
||||
//! new.Z() = <me>.Z() - Other.Z()
|
||||
//! @endcode
|
||||
Standard_NODISCARD gp_XYZ Subtracted (const gp_XYZ& Right) const;
|
||||
Standard_NODISCARD gp_XYZ operator - (const gp_XYZ& Right) const
|
||||
{
|
||||
@ -299,32 +317,44 @@ public:
|
||||
|
||||
|
||||
//! <me> is set to the following linear form :
|
||||
//! @code
|
||||
//! A1 * XYZ1 + A2 * XYZ2 + A3 * XYZ3 + XYZ4
|
||||
//! @endcode
|
||||
void SetLinearForm (const Standard_Real A1, const gp_XYZ& XYZ1, const Standard_Real A2, const gp_XYZ& XYZ2, const Standard_Real A3, const gp_XYZ& XYZ3, const gp_XYZ& XYZ4);
|
||||
|
||||
|
||||
//! <me> is set to the following linear form :
|
||||
//! @code
|
||||
//! A1 * XYZ1 + A2 * XYZ2 + A3 * XYZ3
|
||||
//! @endcode
|
||||
void SetLinearForm (const Standard_Real A1, const gp_XYZ& XYZ1, const Standard_Real A2, const gp_XYZ& XYZ2, const Standard_Real A3, const gp_XYZ& XYZ3);
|
||||
|
||||
|
||||
//! <me> is set to the following linear form :
|
||||
//! @code
|
||||
//! A1 * XYZ1 + A2 * XYZ2 + XYZ3
|
||||
//! @endcode
|
||||
void SetLinearForm (const Standard_Real A1, const gp_XYZ& XYZ1, const Standard_Real A2, const gp_XYZ& XYZ2, const gp_XYZ& XYZ3);
|
||||
|
||||
|
||||
//! <me> is set to the following linear form :
|
||||
//! @code
|
||||
//! A1 * XYZ1 + A2 * XYZ2
|
||||
//! @endcode
|
||||
void SetLinearForm (const Standard_Real A1, const gp_XYZ& XYZ1, const Standard_Real A2, const gp_XYZ& XYZ2);
|
||||
|
||||
|
||||
//! <me> is set to the following linear form :
|
||||
//! @code
|
||||
//! A1 * XYZ1 + XYZ2
|
||||
//! @endcode
|
||||
void SetLinearForm (const Standard_Real A1, const gp_XYZ& XYZ1, const gp_XYZ& XYZ2);
|
||||
|
||||
|
||||
//! <me> is set to the following linear form :
|
||||
//! @code
|
||||
//! XYZ1 + XYZ2
|
||||
//! @endcode
|
||||
void SetLinearForm (const gp_XYZ& XYZ1, const gp_XYZ& XYZ2);
|
||||
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user