1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-05-11 10:44:53 +03:00
occt/src/Expr/Expr_Product.cxx
abv ed4415982c 0024624: Lost word in license statement in source files
License statement text corrected; compiler warnings caused by Bison 2.41 disabled for MSVC; a few other compiler warnings on 54-bit Windows eliminated by appropriate type cast
Wrong license statements corrected in several files.
Copyright and license statements added in XSD and GLSL files.
Copyright year updated in some files.
Obsolete documentation files removed from DrawResources.
2014-03-25 16:38:55 +04:00

282 lines
7.4 KiB
C++

// Created on: 1991-04-17
// Created by: Arnaud BOUZY
// Copyright (c) 1991-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#ifndef DEB
#define No_Standard_RangeError
#define No_Standard_OutOfRange
#endif
#include <Expr_Product.ixx>
#include <TColStd_Array1OfInteger.hxx>
#include <Expr_Sum.hxx>
#include <Expr_UnaryMinus.hxx>
#include <Expr_NumericValue.hxx>
#include <Expr_Operators.hxx>
#include <Expr.hxx>
Expr_Product::Expr_Product (const Expr_SequenceOfGeneralExpression& exps)
{
Standard_Integer i;
Standard_Integer max = exps.Length();
for (i=1; i<= max; i++) {
AddOperand(exps(i));
}
}
Expr_Product::Expr_Product (const Handle(Expr_GeneralExpression)& exp1, const Handle(Expr_GeneralExpression)& exp2)
{
AddOperand(exp1);
AddOperand(exp2);
}
Handle(Expr_GeneralExpression) Expr_Product::Copy () const
{
Standard_Integer i;
Standard_Integer max = NbOperands();
Expr_SequenceOfGeneralExpression simps;
for (i=1; i<= max; i++) {
simps.Append(Expr::CopyShare(Operand(i)));
}
return new Expr_Product(simps);
}
Standard_Boolean Expr_Product::IsIdentical (const Handle(Expr_GeneralExpression)& Other) const
{
if (!Other->IsKind(STANDARD_TYPE(Expr_Product))) {
return Standard_False;
}
Handle(Expr_Product) me = this;
Handle(Expr_Product) POther = Handle(Expr_Product)::DownCast(Other);
Standard_Integer max = NbOperands();
if (POther->NbOperands() != max) {
return Standard_False;
}
Handle(Expr_GeneralExpression) myop;
Handle(Expr_GeneralExpression) hisop;
Standard_Integer i=1;
TColStd_Array1OfInteger tab(1,max);
for (Standard_Integer k=1; k<=max;k++) {
tab(k)=0;
}
Standard_Boolean ident = Standard_True;
while ((i<=max) && (ident)) {
Standard_Integer j=1;
Standard_Boolean found = Standard_False;
myop = Operand(i);
while ((j<=max) && (!found)) {
hisop = POther->Operand(j);
found = myop->IsIdentical(hisop);
if (found) {
found = (tab(j) == 0);
tab(j)=i;
}
j++;
}
ident = found;
i++;
}
return ident;
}
Standard_Boolean Expr_Product::IsLinear () const
{
Standard_Integer i;
Standard_Integer max = NbOperands();
Standard_Boolean lin = Standard_True;
Standard_Boolean res = Standard_True;
Handle(Expr_GeneralExpression) asimp;
for (i=1; (i <= max) && res ; i++) {
asimp = Operand(i);
if (asimp->IsKind(STANDARD_TYPE(Expr_NamedUnknown)) || asimp->ContainsUnknowns()) {
if (lin) {
lin = Standard_False;
if (!asimp->IsLinear()) {
res = Standard_False;
}
}
else {
res = Standard_False;
}
}
}
return res;
}
Handle(Expr_GeneralExpression) Expr_Product::Derivative (const Handle(Expr_NamedUnknown)& X) const
{
if (!Contains(X)) {
return new Expr_NumericValue(0.0);
}
Handle(Expr_GeneralExpression) firstop = Expr::CopyShare(Operand(1)); // U
Handle(Expr_GeneralExpression) tailop; // V
Standard_Integer nbop = NbOperands();
if (nbop == 2) {
tailop = Expr::CopyShare(Operand(2));
}
else {
Handle(Expr_Product) prodop = Expr::CopyShare(Operand(2))*Expr::CopyShare(Operand(3));
for (Standard_Integer i=4; i<= nbop; i++) {
prodop->AddOperand(Expr::CopyShare(Operand(i)));
}
tailop = prodop;
}
Handle(Expr_GeneralExpression) firstder = firstop->Derivative(X); // U'
Handle(Expr_GeneralExpression) tailder = tailop->Derivative(X); // V'
Handle(Expr_Product) firstmember = firstop * tailder; // U*V'
Handle(Expr_Product) secondmember = firstder * tailop; // U'*V
Handle(Expr_Sum) resu = firstmember->ShallowSimplified() + secondmember->ShallowSimplified();
// U*V' + U'*V
return resu->ShallowSimplified();
}
Handle(Expr_GeneralExpression) Expr_Product::ShallowSimplified () const
{
Standard_Integer i;
Standard_Integer max = NbOperands();
Handle(Expr_GeneralExpression) op;
Expr_SequenceOfGeneralExpression newops;
Standard_Real vals = 0.;
Standard_Integer nbvals = 0;
Standard_Boolean subprod = Standard_False;
for (i=1; (i<= max) && !subprod; i++) {
op = Operand(i);
subprod = op->IsKind(STANDARD_TYPE(Expr_Product));
}
if (subprod) {
Handle(Expr_GeneralExpression) other;
Handle(Expr_Product) prodop;
Standard_Integer nbsprodop;
for (i=1; i<= max; i++) {
op = Operand(i);
if (op->IsKind(STANDARD_TYPE(Expr_Product))) {
prodop = Handle(Expr_Product)::DownCast(op);
nbsprodop = prodop->NbOperands();
for (Standard_Integer j=1; j<= nbsprodop; j++) {
other = prodop->Operand(j);
newops.Append(other);
}
}
else {
newops.Append(op);
}
}
prodop = new Expr_Product(newops);
return prodop->ShallowSimplified();
}
Standard_Boolean noone = Standard_True;
for (i = 1; i <= max ; i++) {
op = Operand(i);
if (op->IsKind(STANDARD_TYPE(Expr_NumericValue))) {
// numeric operands are cumulated separetly
Handle(Expr_NumericValue) NVop = Handle(Expr_NumericValue)::DownCast(op);
if (nbvals == 0) {
noone = Standard_False;
vals = NVop->GetValue();
nbvals =1;
}
else {
nbvals++;
vals = vals * NVop->GetValue();
}
}
else {
newops.Append(op);
}
}
if (!noone) {
// numeric operands encountered
if (newops.IsEmpty()) { // result is only numericvalue (even zero)
// only numerics
return new Expr_NumericValue(vals);
}
if (vals != 0.0) {
if (vals == 1.0) {
if (newops.Length() == 1) {
return newops(1);
}
return new Expr_Product(newops);
}
if (vals == -1.0) {
Handle(Expr_GeneralExpression) thefact;
if (newops.Length() == 1) {
thefact = newops(1);
}
else {
thefact = new Expr_Product(newops);
}
return -(thefact);
}
if (nbvals == 1) {
Handle(Expr_Product) me = this;
return me;
}
Handle(Expr_NumericValue) thevals = new Expr_NumericValue(vals);
newops.Append(thevals); // non-zero value added
return new Expr_Product(newops);
}
else {
return new Expr_NumericValue(vals); // zero absorb
}
}
Handle(Expr_Product) me = this;
return me;
}
Standard_Real Expr_Product::Evaluate(const Expr_Array1OfNamedUnknown& vars, const TColStd_Array1OfReal& vals) const
{
Standard_Integer max = NbOperands();
Standard_Real res = 1.0;
for (Standard_Integer i=1;i<=max;i++) {
res = res * Operand(i)->Evaluate(vars,vals);
}
return res;
}
TCollection_AsciiString Expr_Product::String() const
{
Handle(Expr_GeneralExpression) op;
Standard_Integer nbop = NbOperands();
op = Operand(1);
TCollection_AsciiString str;
if (op->NbSubExpressions() > 1) {
str = "(";
str += op->String();
str += ")";
}
else {
str = op->String();
}
for (Standard_Integer i=2; i<=nbop; i++) {
str += "*";
op = Operand(i);
if (op->NbSubExpressions() > 1) {
str += "(";
str += op->String();
str += ")";
}
else {
str += op->String();
}
}
return str;
}