// Created on: 1994-09-05 // Created by: Yves FRICAUD // Copyright (c) 1994-1999 Matra Datavision // Copyright (c) 1999-2014 OPEN CASCADE SAS // // This file is part of Open CASCADE Technology software library. // // This library is free software; you can redistribute it and/or modify it under // the terms of the GNU Lesser General Public License version 2.1 as published // by the Free Software Foundation, with special exception defined in the file // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT // distribution for complete text of the license and disclaimer of any warranty. // // Alternatively, this file may be used under the terms of Open CASCADE // commercial license or contractual agreement. #include #include #include #include #include #include #include //======================================================================= //function : //purpose : //======================================================================= Geom2dLProp_NumericCurInf2d::Geom2dLProp_NumericCurInf2d() { } //======================================================================= //function : PerformCurExt //purpose : //======================================================================= void Geom2dLProp_NumericCurInf2d::PerformCurExt (const Handle(Geom2d_Curve)& C,LProp_CurAndInf& Result) { PerformCurExt(C,Geom2dLProp_Curve2dTool::FirstParameter(C),Geom2dLProp_Curve2dTool::LastParameter(C),Result); } //======================================================================= //function : PerformCurExt //purpose : //======================================================================= void Geom2dLProp_NumericCurInf2d::PerformCurExt (const Handle(Geom2d_Curve)& C, const Standard_Real UMin, const Standard_Real UMax, LProp_CurAndInf& Result) { isDone = Standard_True; Standard_Real EpsH = 1.e-4*(UMax - UMin); Standard_Real Tol = Precision::PConfusion(); // la premiere recherce se fait avec une tolerance assez grande // car la derivee de la fonction est estimee assez grossierement. Geom2dLProp_FuncCurExt F(C,EpsH); Standard_Integer NbSamples = 100; Standard_Boolean SolType; math_FunctionRoots SolRoot (F,UMin,UMax,NbSamples,EpsH,EpsH,EpsH); if (SolRoot.IsDone()) { for (Standard_Integer j = 1; j <= SolRoot.NbSolutions(); j++) { Standard_Real Param = SolRoot.Value(j); // la solution est affinee. math_BracketedRoot BS (F, Param - EpsH, Param + EpsH, Tol); if (BS.IsDone()) {Param = BS.Root();} SolType = F.IsMinKC(Param); Result.AddExtCur(Param,SolType); } } else { isDone = Standard_False; } } //======================================================================= //function : PerformInf //purpose : //======================================================================= void Geom2dLProp_NumericCurInf2d::PerformInf(const Handle(Geom2d_Curve)& C,LProp_CurAndInf& Result) { PerformInf(C,Geom2dLProp_Curve2dTool::FirstParameter(C),Geom2dLProp_Curve2dTool::LastParameter(C),Result); } //======================================================================= //function : PerformInf //purpose : //======================================================================= void Geom2dLProp_NumericCurInf2d::PerformInf(const Handle(Geom2d_Curve)& C, const Standard_Real UMin, const Standard_Real UMax, LProp_CurAndInf& Result) { isDone = Standard_True; Geom2dLProp_FuncCurNul F(C); Standard_Real EpsX = 1.e-6; Standard_Real EpsF = 1.e-6; Standard_Integer NbSamples = 30; math_FunctionRoots SolRoot (F,UMin,UMax,NbSamples,EpsX,EpsF,EpsX); if (SolRoot.IsDone()) { for (Standard_Integer j = 1; j <= SolRoot.NbSolutions(); j++) { Result.AddInflection(SolRoot.Value(j)); } } else { isDone = Standard_False; } } //======================================================================= //function : IsDone //purpose : //======================================================================= Standard_Boolean Geom2dLProp_NumericCurInf2d::IsDone() const { return isDone; }