// Copyright (c) 1997-1999 Matra Datavision // Copyright (c) 1999-2014 OPEN CASCADE SAS // // This file is part of Open CASCADE Technology software library. // // This library is free software; you can redistribute it and/or modify it under // the terms of the GNU Lesser General Public License version 2.1 as published // by the Free Software Foundation, with special exception defined in the file // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT // distribution for complete text of the license and disclaimer of any warranty. // // Alternatively, this file may be used under the terms of Open CASCADE // commercial license or contractual agreement. // #ifndef OCCT_DEBUG #define No_Standard_RangeError #define No_Standard_OutOfRange #define No_Standard_DimensionError // #endif #include #include #include #include #include math_FunctionAllRoots::math_FunctionAllRoots(math_FunctionWithDerivative& F, const math_FunctionSample& S, const Standard_Real EpsX, const Standard_Real EpsF, const Standard_Real EpsNul) { done = Standard_False; Standard_Boolean Nul, PNul, InterNul, Nuld, Nulf; Standard_Real DebNul = 0., FinNul = 0.; Standard_Integer Indd = 0, Indf = 0; Standard_Real cst, val, valsav = 0, valbid; Standard_Boolean fini; Standard_Integer Nbp, i; Nbp = S.NbPoints(); F.Value(S.GetParameter(1), val); PNul = Abs(val) <= EpsNul; if (!PNul) { valsav = val; } InterNul = Standard_False; Nuld = Standard_False; Nulf = Standard_False; i = 2; fini = (i > Nbp); while (!fini) { F.Value(S.GetParameter(i), val); Nul = Abs(val) <= EpsNul; if (!Nul) { valsav = val; } if (InterNul && (!Nul)) { InterNul = Standard_False; pdeb.Append(DebNul); ideb.Append(Indd); if (val > 0.0) { cst = EpsNul; } else { cst = -EpsNul; } math_FunctionRoots Res1(F, S.GetParameter(i - 1), S.GetParameter(i), 10, EpsX, EpsF, 0.0, cst); Standard_NumericError_Raise_if((!Res1.IsDone()) || (Res1.IsAllNull()) || (Res1.NbSolutions() == 0), " "); FinNul = Res1.Value(1); Indf = Res1.StateNumber(1); cst = -cst; math_FunctionRoots Res2(F, S.GetParameter(i - 1), S.GetParameter(i), 10, EpsX, EpsF, 0.0, cst); Standard_NumericError_Raise_if((!Res2.IsDone()) || (Res2.IsAllNull()), " "); //-- || (Res2.NbSolutions()!=0), " "); lbr le 13 mai 87 (!=0 -> ==0) if (Res2.NbSolutions() != 0) { if (Res2.Value(1) < FinNul) { FinNul = Res2.Value(1); Indf = Res2.StateNumber(1); } } pfin.Append(FinNul); ifin.Append(Indf); } else if ((!InterNul) && PNul && Nul) { InterNul = Standard_True; if (i == 2) { DebNul = S.GetParameter(1); F.Value(DebNul, valbid); Indd = F.GetStateNumber(); Nuld = Standard_True; } else { if (valsav > 0.0) { cst = EpsNul; } else { cst = -EpsNul; } math_FunctionRoots Res1(F, S.GetParameter(i - 2), S.GetParameter(i - 1), 10, EpsX, EpsF, 0.0, cst); Standard_NumericError_Raise_if((!Res1.IsDone()) || (Res1.IsAllNull()) || (Res1.NbSolutions() == 0), " "); DebNul = Res1.Value(Res1.NbSolutions()); Indd = Res1.StateNumber(Res1.NbSolutions()); cst = -cst; math_FunctionRoots Res3(F, S.GetParameter(i - 2), S.GetParameter(i - 1), 10, EpsX, EpsF, 0.0, cst); Standard_NumericError_Raise_if((!Res3.IsDone()) || (Res3.IsAllNull()), " "); if (Res3.NbSolutions() != 0) { if (Res3.Value(Res3.NbSolutions()) > DebNul) { DebNul = Res3.Value(Res3.NbSolutions()); Indd = Res3.StateNumber(Res3.NbSolutions()); } } } } i = i + 1; PNul = Nul; fini = (i > Nbp); } if (InterNul) { // rajouter l intervalle finissant au dernier pt pdeb.Append(DebNul); ideb.Append(Indd); FinNul = S.GetParameter(Nbp); F.Value(FinNul, valbid); Indf = F.GetStateNumber(); pfin.Append(FinNul); ifin.Append(Indf); Nulf = Standard_True; } if (pdeb.Length() == 0) { // Pas d intervalle nul math_FunctionRoots Res(F, S.GetParameter(1), S.GetParameter(Nbp), Nbp, EpsX, EpsF, 0.0); Standard_NumericError_Raise_if((!Res.IsDone()) || (Res.IsAllNull()), " "); for (Standard_Integer j = 1; j <= Res.NbSolutions(); j++) { piso.Append(Res.Value(j)); iiso.Append(Res.StateNumber(j)); } } else { Standard_Integer NbpMin = 3; Standard_Integer Nbrpt; if (!Nuld) { // Recherche des solutions entre S.GetParameter(1) // et le debut du 1er intervalle nul Nbrpt = (Standard_Integer)IntegerPart( Abs((pdeb.Value(1) - S.GetParameter(1)) / (S.GetParameter(Nbp) - S.GetParameter(1))) * Nbp); math_FunctionRoots Res(F, S.GetParameter(1), pdeb.Value(1), Max(Nbrpt, NbpMin), EpsX, EpsF, 0.0); Standard_NumericError_Raise_if((!Res.IsDone()) || (Res.IsAllNull()), " "); for (Standard_Integer j = 1; j <= Res.NbSolutions(); j++) { piso.Append(Res.Value(j)); iiso.Append(Res.StateNumber(j)); } } for (Standard_Integer k = 2; k <= pdeb.Length(); k++) { Nbrpt = (Standard_Integer)IntegerPart( Abs((pdeb.Value(k) - pfin.Value(k - 1)) / (S.GetParameter(Nbp) - S.GetParameter(1))) * Nbp); math_FunctionRoots Res(F, pfin.Value(k - 1), pdeb.Value(k), Max(Nbrpt, NbpMin), EpsX, EpsF, 0.0); Standard_NumericError_Raise_if((!Res.IsDone()) || (Res.IsAllNull()), " "); for (Standard_Integer j = 1; j <= Res.NbSolutions(); j++) { piso.Append(Res.Value(j)); iiso.Append(Res.StateNumber(j)); } } if (!Nulf) { // Recherche des solutions entre la fin du // dernier intervalle nul et Value(Nbp). Nbrpt = (Standard_Integer)IntegerPart(Abs((S.GetParameter(Nbp) - pfin.Value(pdeb.Length())) / (S.GetParameter(Nbp) - S.GetParameter(1))) * Nbp); math_FunctionRoots Res(F, pfin.Value(pdeb.Length()), S.GetParameter(Nbp), Max(Nbrpt, NbpMin), EpsX, EpsF, 0.0); Standard_NumericError_Raise_if((!Res.IsDone()) || (Res.IsAllNull()), " "); for (Standard_Integer j = 1; j <= Res.NbSolutions(); j++) { piso.Append(Res.Value(j)); iiso.Append(Res.StateNumber(j)); } } } done = Standard_True; } void math_FunctionAllRoots::Dump(Standard_OStream& o) const { o << "math_FunctionAllRoots "; if (done) { o << " Status = Done \n"; o << " Number of null intervals = " << pdeb.Length() << std::endl; o << " Number of points where the function is null: " << piso.Length() << std::endl; } else { o << " Status = not Done \n"; } }