// Copyright (c) 1997-1999 Matra Datavision // Copyright (c) 1999-2014 OPEN CASCADE SAS // // This file is part of Open CASCADE Technology software library. // // This library is free software; you can redistribute it and/or modify it under // the terms of the GNU Lesser General Public License version 2.1 as published // by the Free Software Foundation, with special exception defined in the file // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT // distribution for complete text of the license and disclaimer of any warranty. // // Alternatively, this file may be used under the terms of Open CASCADE // commercial license or contractual agreement. // lpa le 20/08/91 // #ifndef OCCT_DEBUG #define No_Standard_RangeError #define No_Standard_OutOfRange #define No_Standard_DimensionError // #endif #include #include #include #include #include #include math_Crout::math_Crout(const math_Matrix& A, const Standard_Real MinPivot) : InvA(1, A.RowNumber(), 1, A.ColNumber()) { Standard_Integer i, j, k; Standard_Integer Nctl = A.RowNumber(); Standard_Integer lowr = A.LowerRow(), lowc = A.LowerCol(); Standard_Real scale; math_Matrix L(1, Nctl, 1, Nctl); math_Vector Diag(1, Nctl); math_NotSquare_Raise_if(Nctl != A.ColNumber(), " "); Det = 1; for (i = 1; i <= Nctl; i++) { for (j = 1; j <= i - 1; j++) { scale = 0.0; for (k = 1; k <= j - 1; k++) { scale += L(i, k) * L(j, k) * Diag(k); } L(i, j) = (A(i + lowr - 1, j + lowc - 1) - scale) / Diag(j); } scale = 0.0; for (k = 1; k <= i - 1; k++) { scale += L(i, k) * L(i, k) * Diag(k); } Diag(i) = A(i + lowr - 1, i + lowc - 1) - scale; Det *= Diag(i); if (Abs(Diag(i)) <= MinPivot) { Done = Standard_False; return; } L(i, i) = 1.0; } // Calcul de l inverse de L: //========================== L(1, 1) = 1. / L(1, 1); for (i = 2; i <= Nctl; i++) { for (k = 1; k <= i - 1; k++) { scale = 0.0; for (j = k; j <= i - 1; j++) { scale += L(i, j) * L(j, k); } L(i, k) = -scale / L(i, i); } L(i, i) = 1. / L(i, i); } // Calcul de l inverse de Mat: //============================ for (j = 1; j <= Nctl; j++) { scale = L(j, j) * L(j, j) / Diag(j); for (k = j + 1; k <= Nctl; k++) { scale += L(k, j) * L(k, j) / Diag(k); } InvA(j, j) = scale; for (i = j + 1; i <= Nctl; i++) { scale = L(i, j) * L(i, i) / Diag(i); for (k = i + 1; k <= Nctl; k++) { scale += L(k, j) * L(k, i) / Diag(k); } InvA(i, j) = scale; } } Done = Standard_True; } void math_Crout::Solve(const math_Vector& B, math_Vector& X) const { StdFail_NotDone_Raise_if(!Done, " "); Standard_DimensionError_Raise_if((B.Length() != InvA.RowNumber()) || (X.Length() != B.Length()), " "); Standard_Integer n = InvA.RowNumber(); Standard_Integer lowb = B.Lower(), lowx = X.Lower(); Standard_Integer i, j; for (i = 1; i <= n; i++) { X(i + lowx - 1) = InvA(i, 1) * B(1 + lowb - 1); for (j = 2; j <= i; j++) { X(i + lowx - 1) += InvA(i, j) * B(j + lowb - 1); } for (j = i + 1; j <= n; j++) { X(i + lowx - 1) += InvA(j, i) * B(j + lowb - 1); } } } void math_Crout::Dump(Standard_OStream& o) const { o << "math_Crout "; if (Done) { o << " Status = Done \n"; } else { o << " Status = not Done \n"; } }