// Copyright (c) 1997-1999 Matra Datavision // Copyright (c) 1999-2012 OPEN CASCADE SAS // // The content of this file is subject to the Open CASCADE Technology Public // License Version 6.5 (the "License"). You may not use the content of this file // except in compliance with the License. Please obtain a copy of the License // at http://www.opencascade.org and read it completely before using this file. // // The Initial Developer of the Original Code is Open CASCADE S.A.S., having its // main offices at: 1, place des Freres Montgolfier, 78280 Guyancourt, France. // // The Original Code and all software distributed under the License is // distributed on an "AS IS" basis, without warranty of any kind, and the // Initial Developer hereby disclaims all such warranties, including without // limitation, any warranties of merchantability, fitness for a particular // purpose or non-infringement. Please see the License for the specific terms // and conditions governing the rights and limitations under the License. // pmn 15/05/97 pas de Gauss avec des pivot trop petit. SVD fait mieux // l'affaire + limitation de la longeur du pas + qq comentaire issus d'EUCLID3 // pmn 10/06/97 refonte totale du traitement des bords + ajustement des init // et des tolerances pour brent... //#ifndef DEB #define No_Standard_RangeError #define No_Standard_OutOfRange #define No_Standard_DimensionError //#endif //math_FunctionSetRoot.cxx #include #include #include #include #include #include #include #include #include #include //=========================================================================== // - A partir d une solution de depart, recherche d une direction.( Newton la // plupart du temps, gradient si Newton echoue. // - Recadrage au niveau des bornes avec recalcul de la direction si une // inconnue a une valeur imposee. // -Si On ne sort pas des bornes // Tant que (On ne progresse pas assez ou on ne change pas de direction) // . Si (Progression encore possible) // Si (On ne sort pas des bornes) // On essaye de progresser dans cette meme direction. // Sinon // On diminue le pas d'avancement ou on change de direction. // Sinon // Si on depasse le minimum // On fait une interpolation parabolique. // - Si on a progresse sur F // On fait les tests d'arret // Sinon // On change de direction //============================================================================ #define FSR_DEBUG(arg) // Uncomment the following code to have debug output to cout /* * / static Standard_Boolean mydebug = Standard_False; #undef FSR_DEBUG #define FSR_DEBUG(arg) {if (mydebug) { cout << arg << endl; }} /* */ class MyDirFunction : public math_Function { math_Vector *P0; math_Vector *Dir; math_Vector *P; math_Vector *FV; math_FunctionSetWithDerivatives *F; public : MyDirFunction(math_Vector& V1, math_Vector& V2, math_Vector& V3, math_Vector& V4, math_FunctionSetWithDerivatives& f) ; void Initialize(const math_Vector& p0, const math_Vector& dir) const; //For hp : Standard_Boolean Value(const math_Vector& Sol, math_Vector& FF, math_Matrix& DF, math_Vector& GH, Standard_Real& F2, Standard_Real& Gnr1); // Standard_Boolean MyDirFunction::Value(const math_Vector& Sol, math_Vector& FF, // math_Matrix& DF, math_Vector& GH, // Standard_Real& F2, Standard_Real& Gnr1); Standard_Boolean Value(const Standard_Real x, Standard_Real& fval) ; }; MyDirFunction::MyDirFunction(math_Vector& V1, math_Vector& V2, math_Vector& V3, math_Vector& V4, math_FunctionSetWithDerivatives& f) { P0 = &V1; Dir = &V2; P = &V3; FV = &V4; F = &f; } void MyDirFunction::Initialize(const math_Vector& p0, const math_Vector& dir) const { *P0 = p0; *Dir = dir; } Standard_Boolean MyDirFunction::Value(const Standard_Real x, Standard_Real& fval) { Standard_Real p; for(Standard_Integer i = P->Lower(); i <= P->Upper(); i++) { p = Dir->Value(i); P->Value(i) = p * x + P0->Value(i); } if( F->Value(*P, *FV) ) { Standard_Real aVal = 0.; for(Standard_Integer i = FV->Lower(); i <= FV->Upper(); i++) { aVal = FV->Value(i); if(aVal < 0.) { if(aVal <= -1.e+100) // Precision::HalfInfinite() later // if(Precision::IsInfinite(Abs(FV->Value(i)))) { // fval = Precision::Infinite(); return Standard_False; } else if(aVal >= 1.e+100) // Precision::HalfInfinite() later return Standard_False; } fval = 0.5 * (FV->Norm2()); return Standard_True; } return Standard_False; } Standard_Boolean MyDirFunction::Value(const math_Vector& Sol, math_Vector& FF, math_Matrix& DF, math_Vector& GH, Standard_Real& F2, Standard_Real& Gnr1) { if( F->Values(Sol, FF, DF) ) { Standard_Real aVal = 0.; for(Standard_Integer i = FF.Lower(); i <= FF.Upper(); i++) { // modified by NIZHNY-MKK Mon Oct 3 17:56:50 2005.BEGIN aVal = FF.Value(i); if(aVal < 0.) { if(aVal <= -1.e+100) // Precision::HalfInfinite() later // if(Precision::IsInfinite(Abs(FF.Value(i)))) { // F2 = Precision::Infinite(); // Gnr1 = Precision::Infinite(); return Standard_False; } else if(aVal >= 1.e+100) // Precision::HalfInfinite() later return Standard_False; // modified by NIZHNY-MKK Mon Oct 3 17:57:05 2005.END } F2 = 0.5 * (FF.Norm2()); GH.TMultiply(DF, FF); Gnr1 = GH.Norm2(); return Standard_True; } return Standard_False; } //-------------------------------------------------------------- static Standard_Boolean MinimizeDirection(const math_Vector& P0, const math_Vector& P1, const math_Vector& P2, const Standard_Real F1, math_Vector& Delta, const math_Vector& Tol, MyDirFunction& F) // Purpose : minimisation a partir de 3 points //------------------------------------------------------- { // (1) Evaluation d'un tolerance parametrique 1D Standard_Real tol1d = 2.1 , invnorme, tsol; Standard_Real Eps = 1.e-16; Standard_Real ax, bx, cx; for (Standard_Integer ii =1; ii<=Tol.Length(); ii++) { invnorme = Abs(Delta(ii)); if (invnorme>Eps) tol1d = Min(tol1d, Tol(ii) / invnorme); } if (tol1d > 1.9) return Standard_False; //Pas la peine de se fatiguer tol1d /= 3; //JR/Hp : math_Vector PP0 = P0 ; math_Vector PP1 = P1 ; Delta = PP1 - PP0; // Delta = P1 - P0; invnorme = Delta.Norm(); if (invnorme <= Eps) return Standard_False; invnorme = ((Standard_Real) 1) / invnorme; F.Initialize(P1, Delta); // (2) On minimise FSR_DEBUG (" minimisation dans la direction") ax = -1; bx = 0; cx = (P2-P1).Norm()*invnorme; if (cx < 1.e-2) return Standard_False; math_BrentMinimum Sol(F, ax, bx, cx, tol1d, 100, tol1d); if(Sol.IsDone()) { tsol = Sol.Location(); if (Sol.Minimum() < F1) { Delta.Multiply(tsol); return Standard_True; } } return Standard_False; } //---------------------------------------------------------------------- static Standard_Boolean MinimizeDirection(const math_Vector& P, math_Vector& Dir, const Standard_Real& PValue, const Standard_Real& PDirValue, const math_Vector& Gradient, const math_Vector& DGradient, const math_Vector& Tol, MyDirFunction& F) // Purpose: minimisation a partir de 2 points et une derives //---------------------------------------------------------------------- { // (0) Evaluation d'un tolerance parametrique 1D Standard_Boolean good = Standard_False; Standard_Real Eps = 1.e-20; Standard_Real tol1d = 1.1, Result = PValue, absdir; for (Standard_Integer ii =1; ii<=Tol.Length(); ii++) { absdir = Abs(Dir(ii)); if (absdir >Eps) tol1d = Min(tol1d, Tol(ii) / absdir); } if (tol1d > 0.9) return Standard_False; // (1) On realise une premiere interpolation quadratique Standard_Real ax, bx, cx, df1, df2, Delta, tsol, fsol, tsolbis; FSR_DEBUG(" essai d interpolation") df1 = Gradient*Dir; df2 = DGradient*Dir; if (df1<-Eps && df2>Eps) { // cuvette tsol = - df1 / (df2 - df1); } else { cx = PValue; bx = df1; ax = PDirValue - (bx+cx); if (Abs(ax) <= Eps) { // cas lineaire if ((Abs(bx) >= Eps)) tsol = - cx/bx; else tsol = 0; } else { // cas quadratique Delta = bx*bx - 4*ax*cx; if (Delta > 1.e-9) { // il y a des racines, on prend la plus proche de 0 Delta = Sqrt(Delta); tsol = -(bx + Delta); tsolbis = (Delta - bx); if (Abs(tsolbis) < Abs(tsol)) tsol = tsolbis; tsol /= 2*ax; } else { // pas ou peu de racine : on "extremise" tsol = -(0.5*bx)/ax; } } } if (Abs(tsol) >= 1) return Standard_False; //resultat sans interet F.Initialize(P, Dir); F.Value(tsol, fsol); if (fsol Neq) { math_SVD Solut(DF); if (Solut.IsDone()) Solut.Solve(-1*FF, Direction); else ChangeDirection = Standard_True; } else if (Ninc < Neq) { // Calcul par GaussLeastSquare math_GaussLeastSquare Solut(DF); if (Solut.IsDone()) Solut.Solve(-1*FF, Direction); else ChangeDirection = Standard_True; } } // Il vaut mieux interdire des directions trops longue // Afin de blinder les cas trop mal conditionne // PMN 12/05/97 Traitement des singularite dans les conges // Sur des surfaces periodiques Standard_Real ratio = Abs( Direction(Direction.Lower()) *InvLengthMax(Direction.Lower()) ); Standard_Integer i; for (i = Direction.Lower()+1; i<=Direction.Upper(); i++) { ratio = Max(ratio, Abs( Direction(i)*InvLengthMax(i)) ); } if (ratio > 1) { Direction /= ratio; } Dy = Direction*GH; if (Dy >= -Eps) { // newton "ne descend pas" on prend le gradient ChangeDirection = Standard_True; } if (ChangeDirection) { // On va faire un gradient ! for (i = Direction.Lower(); i <= Direction.Upper(); i++) { Direction(i) = - GH(i); } Dy = - (GH.Norm2()); } } //===================================================================== static void SearchDirection(const math_Matrix& DF, const math_Vector& GH, const math_Vector& FF, const math_IntegerVector& Constraints, // const math_Vector& X, // Le point d'init const math_Vector& , // Le point d'init Standard_Boolean ChangeDirection, const math_Vector& InvLengthMax, math_Vector& Direction, Standard_Real& Dy) //Purpose : Recherche une direction (et un pas si Newton Fonctionne) le long // d'une frontiere //===================================================================== { Standard_Integer Ninc = DF.ColNumber(), Neq = DF.RowNumber(); Standard_Integer i, j, k, Cons = 0; // verification sur les bornes imposees: for (i = 1; i <= Ninc; i++) { if (Constraints(i) != 0) Cons++; // sinon le systeme a resoudre ne change pas. } if (Cons == 0) { SearchDirection(DF, GH, FF, ChangeDirection, InvLengthMax, Direction, Dy); } else if (Cons == Ninc) { // il n'y a plus rien a faire... for(Standard_Integer i = Direction.Lower(); i <= Direction.Upper(); i++) { Direction(i) = 0; } Dy = 0; } else { //(1) Cas general : On definit un sous probleme math_Matrix DF2(1, Neq, 1, Ninc-Cons); math_Vector MyGH(1, Ninc-Cons); math_Vector MyDirection(1, Ninc-Cons); math_Vector MyInvLengthMax(1, Ninc); for (k=1, i = 1; i <= Ninc; i++) { if (Constraints(i) == 0) { MyGH(k) = GH(i); MyInvLengthMax(k) = InvLengthMax(i); MyDirection(k) = Direction(i); for (j = 1; j <= Neq; j++) { DF2(j, k) = DF(j, i); } k++; //on passe a l'inconnue suivante } } //(2) On le resoud SearchDirection(DF2, MyGH, FF, ChangeDirection, MyInvLengthMax, MyDirection, Dy); // (3) On l'interprete... // Reconstruction de Direction: for (i = 1, k = 1; i <= Ninc; i++) { if (Constraints(i) == 0) { if (!ChangeDirection) { Direction(i) = MyDirection(k); } else Direction(i) = - GH(i); k++; } else { Direction(i) = 0.0; } } } } //==================================================== Standard_Boolean Bounds(const math_Vector& InfBound, const math_Vector& SupBound, const math_Vector& Tol, math_Vector& Sol, const math_Vector& SolSave, math_IntegerVector& Constraints, math_Vector& Delta, Standard_Boolean& theIsNewSol) // // Purpose: Trims an initial solution Sol to be within a domain defined by // InfBound and SupBound. Delta will contain a distance between final Sol and // SolSave. // IsNewSol returns False, if final Sol fully coincides with SolSave, i.e. // if SolSave already lied on a boundary and initial Sol was fully beyond it //====================================================== { Standard_Boolean Out = Standard_False; Standard_Integer i, Ninc = Sol.Length(); Standard_Real monratio = 1; theIsNewSol = Standard_True; // Calcul du ratio de recadrage for (i = 1; i <= Ninc; i++) { Constraints(i) = 0; Delta(i) = Sol(i) - SolSave(i); if (InfBound(i) == SupBound(i)) { Constraints(i) = 1; Out = Standard_True; // Ok mais, cela devrait etre eviter } else if(Sol(i) < InfBound(i)) { Constraints(i) = 1; Out = Standard_True; // Delta(i) is negative if (-Delta(i) > Tol(i)) // Afin d'eviter des ratio nulles pour rien monratio = Min(monratio, (InfBound(i) - SolSave(i))/Delta(i) ); } else if (Sol(i) > SupBound(i)) { Constraints(i) = 1; Out = Standard_True; // Delta(i) is positive if (Delta(i) > Tol(i)) monratio = Min(monratio, (SupBound(i) - SolSave(i))/Delta(i) ); } } if (Out){ // Troncature et derniers recadrage pour blinder (pb numeriques) if (monratio == 0.0) { theIsNewSol = Standard_False; Sol = SolSave; Delta.Init (0.0); } else { Delta *= monratio; Sol = SolSave+Delta; for (i = 1; i <= Ninc; i++) { if(Sol(i) < InfBound(i)) { Sol(i) = InfBound(i); Delta(i) = Sol(i) - SolSave(i); } else if (Sol(i) > SupBound(i)) { Sol(i) = SupBound(i); Delta(i) = Sol(i) - SolSave(i); } } } } return Out; } math_FunctionSetRoot::math_FunctionSetRoot(math_FunctionSetWithDerivatives& F, const math_Vector& Tolerance, const Standard_Integer NbIterations) : Delta(1, F.NbVariables()), Sol(1, F.NbVariables()), DF(1, F.NbEquations(), 1, F.NbVariables()), Tol(1,F.NbVariables()), InfBound(1, F.NbVariables()), SupBound(1, F.NbVariables()), SolSave(1, F.NbVariables()), GH(1, F.NbVariables()), DH(1, F.NbVariables()), DHSave(1, F.NbVariables()), FF(1, F.NbEquations()), PreviousSolution(1, F.NbVariables()), Save(0, NbIterations), Constraints(1, F.NbVariables()), Temp1(1, F.NbVariables()), Temp2(1, F.NbVariables()), Temp3(1, F.NbVariables()), Temp4(1, F.NbEquations()) { for (Standard_Integer i = 1; i <= Tol.Length(); i++) { Tol(i) =Tolerance(i); } Itermax = NbIterations; } math_FunctionSetRoot::math_FunctionSetRoot(math_FunctionSetWithDerivatives& F, const Standard_Integer NbIterations) : Delta(1, F.NbVariables()), Sol(1, F.NbVariables()), DF(1, F.NbEquations(), 1, F.NbVariables()), Tol(1, F.NbVariables()), InfBound(1, F.NbVariables()), SupBound(1, F.NbVariables()), SolSave(1, F.NbVariables()), GH(1, F.NbVariables()), DH(1, F.NbVariables()), DHSave(1, F.NbVariables()), FF(1, F.NbEquations()), PreviousSolution(1, F.NbVariables()), Save(0, NbIterations), Constraints(1, F.NbVariables()), Temp1(1, F.NbVariables()), Temp2(1, F.NbVariables()), Temp3(1, F.NbVariables()), Temp4(1, F.NbEquations()) { Itermax = NbIterations; } math_FunctionSetRoot::math_FunctionSetRoot(math_FunctionSetWithDerivatives& F, const math_Vector& StartingPoint, const math_Vector& Tolerance, const math_Vector& infBound, const math_Vector& supBound, const Standard_Integer NbIterations, Standard_Boolean theStopOnDivergent) : Delta(1, F.NbVariables()), Sol(1, F.NbVariables()), DF(1, F.NbEquations(), 1, F.NbVariables()), Tol(1,F.NbVariables()), InfBound(1, F.NbVariables()), SupBound(1, F.NbVariables()), SolSave(1, F.NbVariables()), GH(1, F.NbVariables()), DH(1, F.NbVariables()), DHSave(1, F.NbVariables()), FF(1, F.NbEquations()), PreviousSolution(1, F.NbVariables()), Save(0, NbIterations), Constraints(1, F.NbVariables()), Temp1(1, F.NbVariables()), Temp2(1, F.NbVariables()), Temp3(1, F.NbVariables()), Temp4(1, F.NbEquations()) { for (Standard_Integer i = 1; i <= Tol.Length(); i++) { Tol(i) =Tolerance(i); } Itermax = NbIterations; Perform(F, StartingPoint, infBound, supBound, theStopOnDivergent); } math_FunctionSetRoot::math_FunctionSetRoot(math_FunctionSetWithDerivatives& F, const math_Vector& StartingPoint, const math_Vector& Tolerance, const Standard_Integer NbIterations) : Delta(1, F.NbVariables()), Sol(1, F.NbVariables()), DF(1, F.NbEquations(), 1, StartingPoint.Length()), Tol(1,F.NbVariables()), InfBound(1, F.NbVariables()), SupBound(1, F.NbVariables()), SolSave(1, F.NbVariables()), GH(1, F.NbVariables()), DH(1, F.NbVariables()), DHSave(1, F.NbVariables()), FF(1, F.NbEquations()), PreviousSolution(1, F.NbVariables()), Save(0, NbIterations), Constraints(1, F.NbVariables()), Temp1(1, F.NbVariables()), Temp2(1, F.NbVariables()), Temp3(1, F.NbVariables()), Temp4(1, F.NbEquations()) { for (Standard_Integer i = 1; i <= Tol.Length(); i++) { Tol(i) = Tolerance(i); } Itermax = NbIterations; InfBound.Init(RealFirst()); SupBound.Init(RealLast()); Perform(F, StartingPoint, InfBound, SupBound); } void math_FunctionSetRoot::Delete() {} void math_FunctionSetRoot::SetTolerance(const math_Vector& Tolerance) { for (Standard_Integer i = 1; i <= Tol.Length(); i++) { Tol(i) = Tolerance(i); } } void math_FunctionSetRoot::Perform(math_FunctionSetWithDerivatives& F, const math_Vector& StartingPoint, const math_Vector& InfBound, const math_Vector& SupBound, Standard_Boolean theStopOnDivergent) { Standard_Integer Ninc = F.NbVariables(), Neq = F.NbEquations(); if ((Neq <= 0) || (StartingPoint.Length()!= Ninc) || (InfBound.Length() != Ninc) || (SupBound.Length() != Ninc)) { Standard_DimensionError:: Raise(); } Standard_Integer i; Standard_Boolean ChangeDirection = Standard_False, Sort = Standard_False, isNewSol = Standard_False; Standard_Boolean Good, Verif; Standard_Boolean Stop; const Standard_Real EpsSqrt = 1.e-16, Eps = 1.e-32, Eps2 = 1.e-64, Progres = 0.005; Standard_Real F2, PreviousMinimum, Dy, OldF; Standard_Real Ambda, Ambda2, Gnr1, Oldgr; math_Vector InvLengthMax(1, Ninc); // Pour bloquer les pas a 1/4 du domaine math_IntegerVector Constraints(1, Ninc); // Pour savoir sur quels bord on se trouve for (i = 1; i <= Ninc ; i++) { // modified by NIZHNY-MKK Mon Oct 3 18:03:50 2005 // InvLengthMax(i) = 1. / Max(Abs(SupBound(i) - InfBound(i))/4, 1.e-9); InvLengthMax(i) = 1. / Max((SupBound(i) - InfBound(i))/4, 1.e-9); } MyDirFunction F_Dir(Temp1, Temp2, Temp3, Temp4, F); Standard_Integer DescenteIter; Done = Standard_False; Sol = StartingPoint; Kount = 0; // myIsDivergent = Standard_False; for (i = 1; i <= Ninc; i++) { myIsDivergent |= (Sol(i) < InfBound(i)) | (SupBound(i) < Sol(i)); } if (theStopOnDivergent & myIsDivergent) { return; } // Verification de la validite des inconnues par rapport aux bornes. // Recentrage sur les bornes si pas valide. for ( i = 1; i <= Ninc; i++) { if (Sol(i) <= InfBound(i)) Sol(i) = InfBound(i); else if (Sol(i) > SupBound(i)) Sol(i) = SupBound(i); } // Calcul de la premiere valeur de F et de son gradient if(!F_Dir.Value(Sol, FF, DF, GH, F2, Gnr1)) { Done = Standard_False; if (!theStopOnDivergent || !myIsDivergent) { State = F.GetStateNumber(); } return; } Ambda2 = Gnr1; // Le rang 0 de Save ne doit servir q'au test accelarteur en fin de boucle // s'il on est dejas sur la solution, il faut leurer ce test pour eviter // de faire une seconde iteration... Save(0) = Max (F2, EpsSqrt); Standard_Real aTol_Func = Epsilon(F2); FSR_DEBUG("=== Mode Debug de Function Set Root" << endl) FSR_DEBUG(" F2 Initial = " << F2) if ((F2 <= Eps) || (Gnr1 <= Eps2)) { Done = Standard_False; if (!theStopOnDivergent || !myIsDivergent) { Done = Standard_True; State = F.GetStateNumber(); } return; } for (Kount = 1; Kount <= Itermax; Kount++) { PreviousMinimum = F2; Oldgr = Gnr1; PreviousSolution = Sol; SolSave = Sol; SearchDirection(DF, GH, FF, ChangeDirection, InvLengthMax, DH, Dy); if (Abs(Dy) <= Eps) { Done = Standard_False; if (!theStopOnDivergent || !myIsDivergent) { Done = Standard_True; ////modified by jgv, 31.08.2011//// F.Value(Sol, FF); //update F before GetStateNumber /////////////////////////////////// State = F.GetStateNumber(); } return; } if (ChangeDirection) { Ambda = Ambda2 / Sqrt(Abs(Dy)); if (Ambda > 1.0) Ambda = 1.0; } else { Ambda = 1.0; Ambda2 = 0.5*Ambda/DH.Norm(); } for( i = Sol.Lower(); i <= Sol.Upper(); i++) { Sol(i) = Sol(i) + Ambda * DH(i); } // for (i = 1; i <= Ninc; i++) { myIsDivergent |= (Sol(i) < InfBound(i)) | (SupBound(i) < Sol(i)); } if (theStopOnDivergent & myIsDivergent) { return; } // Sort = Bounds(InfBound, SupBound, Tol, Sol, SolSave, Constraints, Delta, isNewSol); DHSave = GH; if (isNewSol) { // F_Dir.Value(Sol, FF, DF, GH, F2, Gnr1); if(!F_Dir.Value(Sol, FF, DF, GH, F2, Gnr1)) { Done = Standard_False; if (!theStopOnDivergent || !myIsDivergent) { State = F.GetStateNumber(); } return; } } FSR_DEBUG("Kount = " << Kount) FSR_DEBUG("Le premier F2 = " << F2) FSR_DEBUG("Direction = " << ChangeDirection) if ((F2 <= Eps) || (Gnr1 <= Eps2)) { Done = Standard_False; if (!theStopOnDivergent || !myIsDivergent) { Done = Standard_True; ////modified by jgv, 31.08.2011//// F.Value(Sol, FF); //update F before GetStateNumber /////////////////////////////////// State = F.GetStateNumber(); } return; } if (Sort || (F2/PreviousMinimum > Progres)) { Dy = GH*DH; OldF = PreviousMinimum; Stop = Standard_False; Good = Standard_False; DescenteIter = 0; Standard_Boolean Sortbis; // ------------------------------------------------- // Traitement standard sans traitement des bords // ------------------------------------------------- if (!Sort) { // si l'on est pas sortie on essaye de progresser en avant while((F2/PreviousMinimum > Progres) && !Stop) { if (F2 < OldF && (Dy < 0.0)) { // On essaye de progresser dans cette direction. FSR_DEBUG(" iteration de descente = " << DescenteIter) DescenteIter++; SolSave = Sol; OldF = F2; for( i = Sol.Lower(); i <= Sol.Upper(); i++) { Sol(i) = Sol(i) + Ambda * DH(i); } // for (i = 1; i <= Ninc; i++) { myIsDivergent |= (Sol(i) < InfBound(i)) | (SupBound(i) < Sol(i)); } if (theStopOnDivergent & myIsDivergent) { return; } // Stop = Bounds(InfBound, SupBound, Tol, Sol, SolSave, Constraints, Delta, isNewSol); FSR_DEBUG(" Augmentation de lambda") Ambda *= 1.7; } else { if ((F2 >= OldF)||(F2 >= PreviousMinimum)) { Good = Standard_False; if (DescenteIter == 0) { // C'est le premier pas qui flanche, on fait une interpolation. // et on minimise si necessaire. DescenteIter++; Good = MinimizeDirection(SolSave, Delta, OldF, F2, DHSave, GH, Tol, F_Dir); } else if (ChangeDirection || (DescenteIter>1) || (OldF>PreviousMinimum) ) { // La progression a ete utile, on minimise... DescenteIter++; Good = MinimizeDirection(PreviousSolution, SolSave, Sol, OldF, Delta, Tol, F_Dir); } if (!Good) { Sol = SolSave; F2 = OldF; } else { Sol = SolSave+Delta; // for (i = 1; i <= Ninc; i++) { myIsDivergent |= (Sol(i) < InfBound(i)) | (SupBound(i) < Sol(i)); } if (theStopOnDivergent & myIsDivergent) { return; } // Sort = Bounds(InfBound, SupBound, Tol, Sol, SolSave, Constraints, Delta, isNewSol); } Sort = Standard_False; // On a rejete le point sur la frontiere } Stop = Standard_True; // et on sort dans tous les cas... } DHSave = GH; if (isNewSol) { // F_Dir.Value(Sol, FF, DF, GH, F2, Gnr1); if(!F_Dir.Value(Sol, FF, DF, GH, F2, Gnr1)) { Done = Standard_False; if (!theStopOnDivergent || !myIsDivergent) { State = F.GetStateNumber(); } return; } } Dy = GH*DH; if (Abs(Dy) <= Eps) { if (F2 > OldF) Sol = SolSave; Done = Standard_False; if (!theStopOnDivergent || !myIsDivergent) { Done = Standard_True; ////modified by jgv, 31.08.2011//// F.Value(Sol, FF); //update F before GetStateNumber /////////////////////////////////// State = F.GetStateNumber(); } return; } if (DescenteIter >= 10) { Stop = Standard_True; } } FSR_DEBUG("--- Sortie du Traitement Standard") FSR_DEBUG(" DescenteIter = "<