// Copyright (c) 2014 OPEN CASCADE SAS // // This file is part of Open CASCADE Technology software library. // // This library is free software; you can redistribute it and/or modify it under // the terms of the GNU Lesser General Public License version 2.1 as published // by the Free Software Foundation, with special exception defined in the file // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT // distribution for complete text of the license and disclaimer of any warranty. // // Alternatively, this file may be used under the terms of Open CASCADE // commercial license or contractual agreement. #include #include #include #include #include #include #include IMPLEMENT_STANDARD_RTTIEXT(BSplSLib_Cache,Standard_Transient) //! Converts handle of array of Standard_Real into the pointer to Standard_Real static Standard_Real* ConvertArray(const Handle(TColStd_HArray2OfReal)& theHArray) { const TColStd_Array2OfReal& anArray = theHArray->Array2(); return (Standard_Real*) &(anArray(anArray.LowerRow(), anArray.LowerCol())); } BSplSLib_Cache::BSplSLib_Cache(const Standard_Integer& theDegreeU, const Standard_Boolean& thePeriodicU, const TColStd_Array1OfReal& theFlatKnotsU, const Standard_Integer& theDegreeV, const Standard_Boolean& thePeriodicV, const TColStd_Array1OfReal& theFlatKnotsV, const TColStd_Array2OfReal* theWeights) : myIsRational(theWeights != NULL), myParamsU (theDegreeU, thePeriodicU, theFlatKnotsU), myParamsV (theDegreeV, thePeriodicV, theFlatKnotsV) { Standard_Integer aMinDegree = Min (theDegreeU, theDegreeV); Standard_Integer aMaxDegree = Max (theDegreeU, theDegreeV); Standard_Integer aPWColNumber = (myIsRational ? 4 : 3); myPolesWeights = new TColStd_HArray2OfReal(1, aMaxDegree + 1, 1, aPWColNumber * (aMinDegree + 1)); } Standard_Boolean BSplSLib_Cache::IsCacheValid(Standard_Real theParameterU, Standard_Real theParameterV) const { return myParamsU.IsCacheValid (theParameterU) && myParamsV.IsCacheValid (theParameterV); } void BSplSLib_Cache::BuildCache(const Standard_Real& theParameterU, const Standard_Real& theParameterV, const TColStd_Array1OfReal& theFlatKnotsU, const TColStd_Array1OfReal& theFlatKnotsV, const TColgp_Array2OfPnt& thePoles, const TColStd_Array2OfReal* theWeights) { // Normalize the parameters for periodical B-splines Standard_Real aNewParamU = myParamsU.PeriodicNormalization (theParameterU); Standard_Real aNewParamV = myParamsV.PeriodicNormalization (theParameterV); myParamsU.LocateParameter (aNewParamU, theFlatKnotsU); myParamsV.LocateParameter (aNewParamV, theFlatKnotsV); // BSplSLib uses different convention for span parameters than BSplCLib // (Start is in the middle of the span and length is half-span), // thus we need to amend them here Standard_Real aSpanLengthU = 0.5 * myParamsU.SpanLength; Standard_Real aSpanStartU = myParamsU.SpanStart + aSpanLengthU; Standard_Real aSpanLengthV = 0.5 * myParamsV.SpanLength; Standard_Real aSpanStartV = myParamsV.SpanStart + aSpanLengthV; // Calculate new cache data BSplSLib::BuildCache (aSpanStartU, aSpanStartV, aSpanLengthU, aSpanLengthV, myParamsU.IsPeriodic, myParamsV.IsPeriodic, myParamsU.Degree, myParamsV.Degree, myParamsU.SpanIndex, myParamsV.SpanIndex, theFlatKnotsU, theFlatKnotsV, thePoles, theWeights, myPolesWeights->ChangeArray2()); } void BSplSLib_Cache::D0(const Standard_Real& theU, const Standard_Real& theV, gp_Pnt& thePoint) const { Standard_Real aNewU = myParamsU.PeriodicNormalization (theU); Standard_Real aNewV = myParamsV.PeriodicNormalization (theV); // BSplSLib uses different convention for span parameters than BSplCLib // (Start is in the middle of the span and length is half-span), // thus we need to amend them here Standard_Real aSpanLengthU = 0.5 * myParamsU.SpanLength; Standard_Real aSpanStartU = myParamsU.SpanStart + aSpanLengthU; Standard_Real aSpanLengthV = 0.5 * myParamsV.SpanLength; Standard_Real aSpanStartV = myParamsV.SpanStart + aSpanLengthV; aNewU = (aNewU - aSpanStartU) / aSpanLengthU; aNewV = (aNewV - aSpanStartV) / aSpanLengthV; Standard_Real* aPolesArray = ConvertArray(myPolesWeights); Standard_Real aPoint[4]; Standard_Integer aDimension = myIsRational ? 4 : 3; Standard_Integer aCacheCols = myPolesWeights->RowLength(); Standard_Integer aMinMaxDegree[2] = {Min(myParamsU.Degree, myParamsV.Degree), Max(myParamsU.Degree, myParamsV.Degree)}; Standard_Real aParameters[2]; if (myParamsU.Degree > myParamsV.Degree) { aParameters[0] = aNewV; aParameters[1] = aNewU; } else { aParameters[0] = aNewU; aParameters[1] = aNewV; } NCollection_LocalArray aTransientCoeffs(aCacheCols); // array for intermediate results // Calculate intermediate value of cached polynomial along columns PLib::NoDerivativeEvalPolynomial(aParameters[1], aMinMaxDegree[1], aCacheCols, aMinMaxDegree[1] * aCacheCols, aPolesArray[0], aTransientCoeffs[0]); // Calculate total value PLib::NoDerivativeEvalPolynomial(aParameters[0], aMinMaxDegree[0], aDimension, aDimension * aMinMaxDegree[0], aTransientCoeffs[0], aPoint[0]); thePoint.SetCoord(aPoint[0], aPoint[1], aPoint[2]); if (myIsRational) thePoint.ChangeCoord().Divide(aPoint[3]); } void BSplSLib_Cache::D1(const Standard_Real& theU, const Standard_Real& theV, gp_Pnt& thePoint, gp_Vec& theTangentU, gp_Vec& theTangentV) const { Standard_Real aNewU = myParamsU.PeriodicNormalization (theU); Standard_Real aNewV = myParamsV.PeriodicNormalization (theV); // BSplSLib uses different convention for span parameters than BSplCLib // (Start is in the middle of the span and length is half-span), // thus we need to amend them here Standard_Real aSpanLengthU = 0.5 * myParamsU.SpanLength; Standard_Real aSpanStartU = myParamsU.SpanStart + aSpanLengthU; Standard_Real aSpanLengthV = 0.5 * myParamsV.SpanLength; Standard_Real aSpanStartV = myParamsV.SpanStart + aSpanLengthV; Standard_Real anInvU = 1.0 / aSpanLengthU; Standard_Real anInvV = 1.0 / aSpanLengthV; aNewU = (aNewU - aSpanStartU) * anInvU; aNewV = (aNewV - aSpanStartV) * anInvV; Standard_Real* aPolesArray = ConvertArray(myPolesWeights); Standard_Real aPntDeriv[16]; // result storage (point and derivative coordinates) for (Standard_Integer i = 0; i< 16; i++) aPntDeriv[i] = 0.0; Standard_Integer aDimension = myIsRational ? 4 : 3; Standard_Integer aCacheCols = myPolesWeights->RowLength(); Standard_Integer aMinMaxDegree[2] = {Min(myParamsU.Degree, myParamsV.Degree), Max(myParamsU.Degree, myParamsV.Degree)}; Standard_Real aParameters[2]; if (myParamsU.Degree > myParamsV.Degree) { aParameters[0] = aNewV; aParameters[1] = aNewU; } else { aParameters[0] = aNewU; aParameters[1] = aNewV; } NCollection_LocalArray aTransientCoeffs(aCacheCols<<1); // array for intermediate results // Calculate intermediate values and derivatives of bivariate polynomial along variable with maximal degree PLib::EvalPolynomial(aParameters[1], 1, aMinMaxDegree[1], aCacheCols, aPolesArray[0], aTransientCoeffs[0]); // Calculate a point on surface and a derivative along variable with minimal degree PLib::EvalPolynomial(aParameters[0], 1, aMinMaxDegree[0], aDimension, aTransientCoeffs[0], aPntDeriv[0]); // Calculate derivative along variable with maximal degree PLib::NoDerivativeEvalPolynomial(aParameters[0], aMinMaxDegree[0], aDimension, aMinMaxDegree[0] * aDimension, aTransientCoeffs[aCacheCols], aPntDeriv[aDimension<<1]); Standard_Real* aResult = aPntDeriv; Standard_Real aTempStorage[12]; if (myIsRational) // calculate derivatives divided by weight's derivatives { BSplSLib::RationalDerivative(1, 1, 1, 1, aPntDeriv[0], aTempStorage[0]); aResult = aTempStorage; aDimension--; } thePoint.SetCoord(aResult[0], aResult[1], aResult[2]); if (myParamsU.Degree > myParamsV.Degree) { theTangentV.SetCoord(aResult[aDimension], aResult[aDimension + 1], aResult[aDimension + 2]); Standard_Integer aShift = aDimension<<1; theTangentU.SetCoord(aResult[aShift], aResult[aShift + 1], aResult[aShift + 2]); } else { theTangentU.SetCoord(aResult[aDimension], aResult[aDimension + 1], aResult[aDimension + 2]); Standard_Integer aShift = aDimension<<1; theTangentV.SetCoord(aResult[aShift], aResult[aShift + 1], aResult[aShift + 2]); } theTangentU.Multiply(anInvU); theTangentV.Multiply(anInvV); } void BSplSLib_Cache::D2(const Standard_Real& theU, const Standard_Real& theV, gp_Pnt& thePoint, gp_Vec& theTangentU, gp_Vec& theTangentV, gp_Vec& theCurvatureU, gp_Vec& theCurvatureV, gp_Vec& theCurvatureUV) const { Standard_Real aNewU = myParamsU.PeriodicNormalization (theU); Standard_Real aNewV = myParamsV.PeriodicNormalization (theV); // BSplSLib uses different convention for span parameters than BSplCLib // (Start is in the middle of the span and length is half-span), // thus we need to amend them here Standard_Real aSpanLengthU = 0.5 * myParamsU.SpanLength; Standard_Real aSpanStartU = myParamsU.SpanStart + aSpanLengthU; Standard_Real aSpanLengthV = 0.5 * myParamsV.SpanLength; Standard_Real aSpanStartV = myParamsV.SpanStart + aSpanLengthV; Standard_Real anInvU = 1.0 / aSpanLengthU; Standard_Real anInvV = 1.0 / aSpanLengthV; aNewU = (aNewU - aSpanStartU) * anInvU; aNewV = (aNewV - aSpanStartV) * anInvV; Standard_Real* aPolesArray = ConvertArray(myPolesWeights); Standard_Real aPntDeriv[36]; // result storage (point and derivative coordinates) for (Standard_Integer i = 0; i < 36; i++) aPntDeriv[i] = 0.0; Standard_Integer aDimension = myIsRational ? 4 : 3; Standard_Integer aCacheCols = myPolesWeights->RowLength(); Standard_Integer aMinMaxDegree[2] = {Min(myParamsU.Degree, myParamsV.Degree), Max(myParamsU.Degree, myParamsV.Degree)}; Standard_Real aParameters[2]; if (myParamsU.Degree > myParamsV.Degree) { aParameters[0] = aNewV; aParameters[1] = aNewU; } else { aParameters[0] = aNewU; aParameters[1] = aNewV; } NCollection_LocalArray aTransientCoeffs(3 * aCacheCols); // array for intermediate results // Calculating derivative to be evaluate and // nulling transient coefficients when max or min derivative is less than 2 Standard_Integer aMinMaxDeriv[2] = {Min(2, aMinMaxDegree[0]), Min(2, aMinMaxDegree[1])}; for (Standard_Integer i = aMinMaxDeriv[1] + 1; i < 3; i++) { Standard_Integer index = i * aCacheCols; for (Standard_Integer j = 0; j < aCacheCols; j++) aTransientCoeffs[index++] = 0.0; } // Calculate intermediate values and derivatives of bivariate polynomial along variable with maximal degree PLib::EvalPolynomial(aParameters[1], aMinMaxDeriv[1], aMinMaxDegree[1], aCacheCols, aPolesArray[0], aTransientCoeffs[0]); // Calculate a point on surface and a derivatives along variable with minimal degree PLib::EvalPolynomial(aParameters[0], aMinMaxDeriv[0], aMinMaxDegree[0], aDimension, aTransientCoeffs[0], aPntDeriv[0]); // Calculate derivative along variable with maximal degree and mixed derivative PLib::EvalPolynomial(aParameters[0], 1, aMinMaxDegree[0], aDimension, aTransientCoeffs[aCacheCols], aPntDeriv[3 * aDimension]); // Calculate second derivative along variable with maximal degree PLib::NoDerivativeEvalPolynomial(aParameters[0], aMinMaxDegree[0], aDimension, aMinMaxDegree[0] * aDimension, aTransientCoeffs[aCacheCols<<1], aPntDeriv[6 * aDimension]); Standard_Real* aResult = aPntDeriv; Standard_Real aTempStorage[36]; if (myIsRational) // calculate derivatives divided by weight's derivatives { BSplSLib::RationalDerivative(2, 2, 2, 2, aPntDeriv[0], aTempStorage[0]); aResult = aTempStorage; aDimension--; } thePoint.SetCoord(aResult[0], aResult[1], aResult[2]); if (myParamsU.Degree > myParamsV.Degree) { theTangentV.SetCoord(aResult[aDimension], aResult[aDimension + 1], aResult[aDimension + 2]); Standard_Integer aShift = aDimension<<1; theCurvatureV.SetCoord(aResult[aShift], aResult[aShift + 1], aResult[aShift + 2]); aShift += aDimension; theTangentU.SetCoord(aResult[aShift], aResult[aShift + 1], aResult[aShift + 2]); aShift += aDimension; theCurvatureUV.SetCoord(aResult[aShift], aResult[aShift + 1], aResult[aShift + 2]); aShift += (aDimension << 1); theCurvatureU.SetCoord(aResult[aShift], aResult[aShift + 1], aResult[aShift + 2]); } else { theTangentU.SetCoord(aResult[aDimension], aResult[aDimension + 1], aResult[aDimension + 2]); Standard_Integer aShift = aDimension<<1; theCurvatureU.SetCoord(aResult[aShift], aResult[aShift + 1], aResult[aShift + 2]); aShift += aDimension; theTangentV.SetCoord(aResult[aShift], aResult[aShift + 1], aResult[aShift + 2]); aShift += aDimension; theCurvatureUV.SetCoord(aResult[aShift], aResult[aShift + 1], aResult[aShift + 2]); aShift += (aDimension << 1); theCurvatureV.SetCoord(aResult[aShift], aResult[aShift + 1], aResult[aShift + 2]); } theTangentU.Multiply(anInvU); theTangentV.Multiply(anInvV); theCurvatureU.Multiply(anInvU * anInvU); theCurvatureV.Multiply(anInvV * anInvV); theCurvatureUV.Multiply(anInvU * anInvV); }