// Created on: 1993-03-31 // Created by: Bruno DUMORTIER // Copyright (c) 1993-1999 Matra Datavision // Copyright (c) 1999-2014 OPEN CASCADE SAS // // This file is part of Open CASCADE Technology software library. // // This library is free software; you can redistribute it and/or modify it under // the terms of the GNU Lesser General Public License version 2.1 as published // by the Free Software Foundation, with special exception defined in the file // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT // distribution for complete text of the license and disclaimer of any warranty. // // Alternatively, this file may be used under the terms of Open CASCADE // commercial license or contractual agreement. #ifndef _Adaptor3d_Surface_HeaderFile #define _Adaptor3d_Surface_HeaderFile #include #include #include #include #include #include #include #include #include #include #include #include #include class Geom_BezierSurface; class Geom_BSplineSurface; DEFINE_STANDARD_HANDLE(Adaptor3d_Surface, Standard_Transient) //! Root class for surfaces on which geometric algorithms work. //! An adapted surface is an interface between the //! services provided by a surface and those required of //! the surface by algorithms which use it. //! A derived concrete class is provided: //! GeomAdaptor_Surface for a surface from the Geom package. //! The Surface class describes the standard behaviour //! of a surface for generic algorithms. //! //! The Surface can be decomposed in intervals of any //! continuity in U and V using the method NbIntervals. //! A current interval can be set. //! Most of the methods apply to the current interval. //! Warning: All the methods are virtual and implemented with a //! raise to allow to redefined only the methods really used. //! //! Polynomial coefficients of BSpline surfaces used for their evaluation are cached for better //! performance. Therefore these evaluations are not thread-safe and parallel evaluations need to be //! prevented. class Adaptor3d_Surface : public Standard_Transient { DEFINE_STANDARD_RTTIEXT(Adaptor3d_Surface, Standard_Transient) public: //! Shallow copy of adaptor Standard_EXPORT virtual Handle(Adaptor3d_Surface) ShallowCopy() const; Standard_EXPORT virtual Standard_Real FirstUParameter() const; Standard_EXPORT virtual Standard_Real LastUParameter() const; Standard_EXPORT virtual Standard_Real FirstVParameter() const; Standard_EXPORT virtual Standard_Real LastVParameter() const; Standard_EXPORT virtual GeomAbs_Shape UContinuity() const; Standard_EXPORT virtual GeomAbs_Shape VContinuity() const; //! Returns the number of U intervals for continuity //! . May be one if UContinuity(me) >= Standard_EXPORT virtual Standard_Integer NbUIntervals(const GeomAbs_Shape S) const; //! Returns the number of V intervals for continuity //! . May be one if VContinuity(me) >= Standard_EXPORT virtual Standard_Integer NbVIntervals(const GeomAbs_Shape S) const; //! Returns the intervals with the requested continuity //! in the U direction. Standard_EXPORT virtual void UIntervals(TColStd_Array1OfReal& T, const GeomAbs_Shape S) const; //! Returns the intervals with the requested continuity //! in the V direction. Standard_EXPORT virtual void VIntervals(TColStd_Array1OfReal& T, const GeomAbs_Shape S) const; //! Returns a surface trimmed in the U direction //! equivalent of between //! parameters and . is used to //! test for 3d points confusion. //! If >= Standard_EXPORT virtual Handle(Adaptor3d_Surface) UTrim(const Standard_Real First, const Standard_Real Last, const Standard_Real Tol) const; //! Returns a surface trimmed in the V direction between //! parameters and . is used to //! test for 3d points confusion. //! If >= Standard_EXPORT virtual Handle(Adaptor3d_Surface) VTrim(const Standard_Real First, const Standard_Real Last, const Standard_Real Tol) const; Standard_EXPORT virtual Standard_Boolean IsUClosed() const; Standard_EXPORT virtual Standard_Boolean IsVClosed() const; Standard_EXPORT virtual Standard_Boolean IsUPeriodic() const; Standard_EXPORT virtual Standard_Real UPeriod() const; Standard_EXPORT virtual Standard_Boolean IsVPeriodic() const; Standard_EXPORT virtual Standard_Real VPeriod() const; //! Computes the point of parameters U,V on the surface. //! Tip: use GeomLib::NormEstim() to calculate surface normal at specified (U, V) point. Standard_EXPORT virtual gp_Pnt Value(const Standard_Real U, const Standard_Real V) const; //! Computes the point of parameters U,V on the surface. Standard_EXPORT virtual void D0(const Standard_Real U, const Standard_Real V, gp_Pnt& P) const; //! Computes the point and the first derivatives on the surface. //! Raised if the continuity of the current intervals is not C1. //! //! Tip: use GeomLib::NormEstim() to calculate surface normal at specified (U, V) point. Standard_EXPORT virtual void D1(const Standard_Real U, const Standard_Real V, gp_Pnt& P, gp_Vec& D1U, gp_Vec& D1V) const; //! Computes the point, the first and second //! derivatives on the surface. //! Raised if the continuity of the current //! intervals is not C2. Standard_EXPORT virtual void D2(const Standard_Real U, const Standard_Real V, gp_Pnt& P, gp_Vec& D1U, gp_Vec& D1V, gp_Vec& D2U, gp_Vec& D2V, gp_Vec& D2UV) const; //! Computes the point, the first, second and third //! derivatives on the surface. //! Raised if the continuity of the current //! intervals is not C3. Standard_EXPORT virtual void D3(const Standard_Real U, const Standard_Real V, gp_Pnt& P, gp_Vec& D1U, gp_Vec& D1V, gp_Vec& D2U, gp_Vec& D2V, gp_Vec& D2UV, gp_Vec& D3U, gp_Vec& D3V, gp_Vec& D3UUV, gp_Vec& D3UVV) const; //! Computes the derivative of order Nu in the direction U and Nv //! in the direction V at the point P(U, V). //! Raised if the current U interval is not not CNu //! and the current V interval is not CNv. //! Raised if Nu + Nv < 1 or Nu < 0 or Nv < 0. Standard_EXPORT virtual gp_Vec DN(const Standard_Real U, const Standard_Real V, const Standard_Integer Nu, const Standard_Integer Nv) const; //! Returns the parametric U resolution corresponding //! to the real space resolution . Standard_EXPORT virtual Standard_Real UResolution(const Standard_Real R3d) const; //! Returns the parametric V resolution corresponding //! to the real space resolution . Standard_EXPORT virtual Standard_Real VResolution(const Standard_Real R3d) const; //! Returns the type of the surface : Plane, Cylinder, //! Cone, Sphere, Torus, BezierSurface, //! BSplineSurface, SurfaceOfRevolution, //! SurfaceOfExtrusion, OtherSurface Standard_EXPORT virtual GeomAbs_SurfaceType GetType() const; Standard_EXPORT virtual gp_Pln Plane() const; Standard_EXPORT virtual gp_Cylinder Cylinder() const; Standard_EXPORT virtual gp_Cone Cone() const; Standard_EXPORT virtual gp_Sphere Sphere() const; Standard_EXPORT virtual gp_Torus Torus() const; Standard_EXPORT virtual Standard_Integer UDegree() const; Standard_EXPORT virtual Standard_Integer NbUPoles() const; Standard_EXPORT virtual Standard_Integer VDegree() const; Standard_EXPORT virtual Standard_Integer NbVPoles() const; Standard_EXPORT virtual Standard_Integer NbUKnots() const; Standard_EXPORT virtual Standard_Integer NbVKnots() const; Standard_EXPORT virtual Standard_Boolean IsURational() const; Standard_EXPORT virtual Standard_Boolean IsVRational() const; Standard_EXPORT virtual Handle(Geom_BezierSurface) Bezier() const; Standard_EXPORT virtual Handle(Geom_BSplineSurface) BSpline() const; Standard_EXPORT virtual gp_Ax1 AxeOfRevolution() const; Standard_EXPORT virtual gp_Dir Direction() const; Standard_EXPORT virtual Handle(Adaptor3d_Curve) BasisCurve() const; Standard_EXPORT virtual Handle(Adaptor3d_Surface) BasisSurface() const; Standard_EXPORT virtual Standard_Real OffsetValue() const; Standard_EXPORT virtual ~Adaptor3d_Surface(); }; #endif // _Adaptor3d_Surface_HeaderFile