// Created on: 1993-08-02 // Created by: Laurent BOURESCHE // Copyright (c) 1993-1999 Matra Datavision // Copyright (c) 1999-2014 OPEN CASCADE SAS // // This file is part of Open CASCADE Technology software library. // // This library is free software; you can redistribute it and/or modify it under // the terms of the GNU Lesser General Public License version 2.1 as published // by the Free Software Foundation, with special exception defined in the file // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT // distribution for complete text of the license and disclaimer of any warranty. // // Alternatively, this file may be used under the terms of Open CASCADE // commercial license or contractual agreement. #ifndef _gp_Ax3_HeaderFile #define _gp_Ax3_HeaderFile #include #include #include #include #include class gp_Trsf; //! Describes a coordinate system in 3D space. Unlike a //! gp_Ax2 coordinate system, a gp_Ax3 can be //! right-handed ("direct sense") or left-handed ("indirect sense"). //! A coordinate system is defined by: //! - its origin (also referred to as its "Location point"), and //! - three orthogonal unit vectors, termed the "X //! Direction", the "Y Direction" and the "Direction" (also //! referred to as the "main Direction"). //! The "Direction" of the coordinate system is called its //! "main Direction" because whenever this unit vector is //! modified, the "X Direction" and the "Y Direction" are //! recomputed. However, when we modify either the "X //! Direction" or the "Y Direction", "Direction" is not modified. //! "Direction" is also the "Z Direction". //! The "main Direction" is always parallel to the cross //! product of its "X Direction" and "Y Direction". //! If the coordinate system is right-handed, it satisfies the equation: //! "main Direction" = "X Direction" ^ "Y Direction" //! and if it is left-handed, it satisfies the equation: //! "main Direction" = -"X Direction" ^ "Y Direction" //! A coordinate system is used: //! - to describe geometric entities, in particular to position //! them. The local coordinate system of a geometric //! entity serves the same purpose as the STEP function //! "axis placement three axes", or //! - to define geometric transformations. //! Note: //! - We refer to the "X Axis", "Y Axis" and "Z Axis", //! respectively, as the axes having: //! - the origin of the coordinate system as their origin, and //! - the unit vectors "X Direction", "Y Direction" and //! "main Direction", respectively, as their unit vectors. //! - The "Z Axis" is also the "main Axis". //! - gp_Ax2 is used to define a coordinate system that must be always right-handed. class gp_Ax3 { public: DEFINE_STANDARD_ALLOC //! Creates an object corresponding to the reference //! coordinate system (OXYZ). gp_Ax3() : vydir (0., 1., 0.) // vxdir(1.,0.,0.) use default ctor of gp_Dir, as it creates the same dir(1,0,0) {} //! Creates a coordinate system from a right-handed //! coordinate system. gp_Ax3 (const gp_Ax2& theA); //! Creates a right handed axis placement with the //! "Location" point theP and two directions, theN gives the //! "Direction" and theVx gives the "XDirection". //! Raises ConstructionError if theN and theVx are parallel (same or opposite orientation). gp_Ax3 (const gp_Pnt& theP, const gp_Dir& theN, const gp_Dir& theVx) : axis (theP, theN), vydir(theN), vxdir(theN) { vxdir.CrossCross (theVx, theN); vydir.Cross (vxdir); } //! Creates an axis placement with the "Location" point //! and the normal direction . Standard_EXPORT gp_Ax3 (const gp_Pnt& theP, const gp_Dir& theV); //! Reverses the X direction of . void XReverse() { vxdir.Reverse(); } //! Reverses the Y direction of . void YReverse() { vydir.Reverse(); } //! Reverses the Z direction of . void ZReverse() { axis.Reverse(); } //! Assigns the origin and "main Direction" of the axis theA1 to //! this coordinate system, then recomputes its "X Direction" and "Y Direction". //! Note: //! - The new "X Direction" is computed as follows: //! new "X Direction" = V1 ^(previous "X Direction" ^ V) //! where V is the "Direction" of theA1. //! - The orientation of this coordinate system //! (right-handed or left-handed) is not modified. //! Raises ConstructionError if the "Direction" of and the "XDirection" of //! are parallel (same or opposite orientation) because it is //! impossible to calculate the new "XDirection" and the new //! "YDirection". void SetAxis (const gp_Ax1& theA1); //! Changes the main direction of this coordinate system, //! then recomputes its "X Direction" and "Y Direction". //! Note: //! - The new "X Direction" is computed as follows: //! new "X Direction" = theV ^ (previous "X Direction" ^ theV). //! - The orientation of this coordinate system (left- or right-handed) is not modified. //! Raises ConstructionError if and the previous "XDirection" are parallel //! because it is impossible to calculate the new "XDirection" //! and the new "YDirection". void SetDirection (const gp_Dir& theV); //! Changes the "Location" point (origin) of . void SetLocation (const gp_Pnt& theP) { axis.SetLocation (theP); } //! Changes the "Xdirection" of . The main direction //! "Direction" is not modified, the "Ydirection" is modified. //! If is not normal to the main direction then //! is computed as follows XDirection = Direction ^ (theVx ^ Direction). //! Raises ConstructionError if is parallel (same or opposite //! orientation) to the main direction of void SetXDirection (const gp_Dir& theVx); //! Changes the "Ydirection" of . The main direction is not //! modified but the "Xdirection" is changed. //! If is not normal to the main direction then "YDirection" //! is computed as follows //! YDirection = Direction ^ ( ^ Direction). //! Raises ConstructionError if is parallel to the main direction of void SetYDirection (const gp_Dir& theVy); //! Computes the angular value between the main direction of //! and the main direction of . Returns the angle //! between 0 and PI in radians. Standard_Real Angle (const gp_Ax3& theOther) const { return axis.Angle (theOther.axis); } //! Returns the main axis of . It is the "Location" point //! and the main "Direction". const gp_Ax1& Axis() const { return axis; } //! Computes a right-handed coordinate system with the //! same "X Direction" and "Y Direction" as those of this //! coordinate system, then recomputes the "main Direction". //! If this coordinate system is right-handed, the result //! returned is the same coordinate system. If this //! coordinate system is left-handed, the result is reversed. gp_Ax2 Ax2() const; //! Returns the main direction of . const gp_Dir& Direction() const { return axis.Direction(); } //! Returns the "Location" point (origin) of . const gp_Pnt& Location() const { return axis.Location(); } //! Returns the "XDirection" of . const gp_Dir& XDirection() const { return vxdir; } //! Returns the "YDirection" of . const gp_Dir& YDirection() const { return vydir; } //! Returns True if the coordinate system is right-handed. i.e. //! XDirection().Crossed(YDirection()).Dot(Direction()) > 0 Standard_Boolean Direct() const { return (vxdir.Crossed (vydir).Dot (axis.Direction()) > 0.); } //! Returns True if //! . the distance between the "Location" point of and //! is lower or equal to theLinearTolerance and //! . the distance between the "Location" point of and //! is lower or equal to theLinearTolerance and //! . the main direction of and the main direction of //! are parallel (same or opposite orientation). Standard_Boolean IsCoplanar (const gp_Ax3& theOther, const Standard_Real theLinearTolerance, const Standard_Real theAngularTolerance) const; //! Returns True if //! . the distance between and the "Location" point of theA1 //! is lower of equal to theLinearTolerance and //! . the distance between theA1 and the "Location" point of //! is lower or equal to theLinearTolerance and //! . the main direction of and the direction of theA1 are normal. Standard_Boolean IsCoplanar (const gp_Ax1& theA1, const Standard_Real theLinearTolerance, const Standard_Real theAngularTolerance) const; Standard_EXPORT void Mirror (const gp_Pnt& theP); //! Performs the symmetrical transformation of an axis //! placement with respect to the point theP which is the //! center of the symmetry. //! Warnings : //! The main direction of the axis placement is not changed. //! The "XDirection" and the "YDirection" are reversed. //! So the axis placement stay right handed. Standard_NODISCARD Standard_EXPORT gp_Ax3 Mirrored (const gp_Pnt& theP) const; Standard_EXPORT void Mirror (const gp_Ax1& theA1); //! Performs the symmetrical transformation of an axis //! placement with respect to an axis placement which //! is the axis of the symmetry. //! The transformation is performed on the "Location" //! point, on the "XDirection" and "YDirection". //! The resulting main "Direction" is the cross product between //! the "XDirection" and the "YDirection" after transformation. Standard_NODISCARD Standard_EXPORT gp_Ax3 Mirrored (const gp_Ax1& theA1) const; Standard_EXPORT void Mirror (const gp_Ax2& theA2); //! Performs the symmetrical transformation of an axis //! placement with respect to a plane. //! The axis placement locates the plane of the symmetry : //! (Location, XDirection, YDirection). //! The transformation is performed on the "Location" //! point, on the "XDirection" and "YDirection". //! The resulting main "Direction" is the cross product between //! the "XDirection" and the "YDirection" after transformation. Standard_NODISCARD Standard_EXPORT gp_Ax3 Mirrored (const gp_Ax2& theA2) const; void Rotate (const gp_Ax1& theA1, const Standard_Real theAng) { axis.Rotate (theA1, theAng); vxdir.Rotate (theA1, theAng); vydir.Rotate (theA1, theAng); } //! Rotates an axis placement. is the axis of the //! rotation . theAng is the angular value of the rotation //! in radians. Standard_NODISCARD gp_Ax3 Rotated (const gp_Ax1& theA1, const Standard_Real theAng) const { gp_Ax3 aTemp = *this; aTemp.Rotate (theA1, theAng); return aTemp; } void Scale (const gp_Pnt& theP, const Standard_Real theS) { axis.Scale (theP, theS); if (theS < 0.) { vxdir.Reverse(); vydir.Reverse(); } } //! Applies a scaling transformation on the axis placement. //! The "Location" point of the axisplacement is modified. //! Warnings : //! If the scale is negative : //! . the main direction of the axis placement is not changed. //! . The "XDirection" and the "YDirection" are reversed. //! So the axis placement stay right handed. Standard_NODISCARD gp_Ax3 Scaled (const gp_Pnt& theP, const Standard_Real theS) const { gp_Ax3 aTemp = *this; aTemp.Scale (theP, theS); return aTemp; } void Transform (const gp_Trsf& theT) { axis.Transform (theT); vxdir.Transform (theT); vydir.Transform (theT); } //! Transforms an axis placement with a Trsf. //! The "Location" point, the "XDirection" and the //! "YDirection" are transformed with theT. The resulting //! main "Direction" of is the cross product between //! the "XDirection" and the "YDirection" after transformation. Standard_NODISCARD gp_Ax3 Transformed (const gp_Trsf& theT) const { gp_Ax3 aTemp = *this; aTemp.Transform (theT); return aTemp; } void Translate (const gp_Vec& theV) { axis.Translate (theV); } //! Translates an axis plaxement in the direction of the vector //! . The magnitude of the translation is the vector's magnitude. Standard_NODISCARD gp_Ax3 Translated (const gp_Vec& theV) const { gp_Ax3 aTemp = *this; aTemp.Translate (theV); return aTemp; } void Translate (const gp_Pnt& theP1, const gp_Pnt& theP2) { Translate (gp_Vec (theP1, theP2)); } //! Translates an axis placement from the point to the //! point . Standard_NODISCARD gp_Ax3 Translated (const gp_Pnt& theP1, const gp_Pnt& theP2) const { return Translated (gp_Vec (theP1, theP2)); } //! Dumps the content of me into the stream Standard_EXPORT void DumpJson (Standard_OStream& theOStream, Standard_Integer theDepth = -1) const; //! Inits the content of me from the stream Standard_EXPORT Standard_Boolean InitFromJson (const Standard_SStream& theSStream, Standard_Integer& theStreamPos); private: gp_Ax1 axis; gp_Dir vydir; gp_Dir vxdir; }; // ======================================================================= // function : gp_Ax3 // purpose : // ======================================================================= inline gp_Ax3::gp_Ax3 (const gp_Ax2& theA) : axis (theA.Axis()), vydir (theA.YDirection()), vxdir (theA.XDirection()) {} // ======================================================================= // function : Ax2 // purpose : // ======================================================================= inline gp_Ax2 gp_Ax3::Ax2()const { gp_Dir aZz = axis.Direction(); if (!Direct()) { aZz.Reverse(); } return gp_Ax2 (axis.Location(), aZz, vxdir); } // ======================================================================= // function : SetAxis // purpose : // ======================================================================= inline void gp_Ax3::SetAxis(const gp_Ax1& theA1) { axis.SetLocation(theA1.Location()); SetDirection(theA1.Direction()); } // ======================================================================= // function : SetDirection // purpose : // ======================================================================= inline void gp_Ax3::SetDirection(const gp_Dir& theV) { Standard_Real aDot = theV.Dot(vxdir); if(1. - Abs(aDot) <= Precision::Angular()) { if(aDot > 0) { vxdir = vydir; vydir = axis.Direction(); } else { vxdir = axis.Direction(); } axis.SetDirection(theV); } else { Standard_Boolean direct = Direct(); axis.SetDirection (theV); vxdir = theV.CrossCrossed (vxdir, theV); if (direct) { vydir = theV.Crossed (vxdir); } else { vydir = vxdir.Crossed (theV); } } } // ======================================================================= // function : SetXDirection // purpose : // ======================================================================= inline void gp_Ax3::SetXDirection (const gp_Dir& theVx) { Standard_Real aDot = theVx.Dot(axis.Direction()); if (1. - Abs(aDot) <= Precision::Angular()) { if (aDot > 0) { axis.SetDirection(vxdir); vydir = -vydir; } else { axis.SetDirection(vxdir); } vxdir = theVx; } else { Standard_Boolean direct = Direct(); vxdir = axis.Direction().CrossCrossed(theVx, axis.Direction()); if (direct) { vydir = axis.Direction().Crossed(vxdir); } else { vydir = vxdir.Crossed(axis.Direction()); } } } // ======================================================================= // function : SetYDirection // purpose : // ======================================================================= inline void gp_Ax3::SetYDirection (const gp_Dir& theVy) { Standard_Real aDot = theVy.Dot(axis.Direction()); if (1. - Abs(aDot) <= Precision::Angular()) { if (aDot > 0) { axis.SetDirection(vydir); vxdir = -vxdir; } else { axis.SetDirection(vydir); } vydir = theVy; } else { Standard_Boolean isDirect = Direct(); vxdir = theVy.Crossed(axis.Direction()); vydir = (axis.Direction()).Crossed(vxdir); if (!isDirect) { vxdir.Reverse(); } } } // ======================================================================= // function : IsCoplanar // purpose : // ======================================================================= inline Standard_Boolean gp_Ax3::IsCoplanar (const gp_Ax3& theOther, const Standard_Real theLinearTolerance, const Standard_Real theAngularTolerance)const { gp_Vec aVec (axis.Location(), theOther.axis.Location()); Standard_Real aD1 = gp_Vec (axis.Direction()).Dot(aVec); if (aD1 < 0) { aD1 = -aD1; } Standard_Real aD2 = gp_Vec (theOther.axis.Direction()).Dot(aVec); if (aD2 < 0) { aD2 = -aD2; } return (aD1 <= theLinearTolerance && aD2 <= theLinearTolerance && axis.IsParallel (theOther.axis, theAngularTolerance)); } // ======================================================================= // function : IsCoplanar // purpose : // ======================================================================= inline Standard_Boolean gp_Ax3::IsCoplanar (const gp_Ax1& theA1, const Standard_Real theLinearTolerance, const Standard_Real theAngularTolerance)const { gp_Vec aVec (axis.Location(), theA1.Location()); Standard_Real aD1 = gp_Vec (axis.Direction()).Dot (aVec); if (aD1 < 0) { aD1 = -aD1; } Standard_Real aD2 = (gp_Vec (theA1.Direction()).Crossed (aVec)).Magnitude(); if (aD2 < 0) { aD2 = -aD2; } return (aD1 <= theLinearTolerance && aD2 <= theLinearTolerance && axis.IsNormal (theA1, theAngularTolerance)); } #endif // _gp_Ax3_HeaderFile