// Copyright (c) 1997-1999 Matra Datavision // Copyright (c) 1999-2014 OPEN CASCADE SAS // // This file is part of Open CASCADE Technology software library. // // This library is free software; you can redistribute it and/or modify it under // the terms of the GNU Lesser General Public License version 2.1 as published // by the Free Software Foundation, with special exception defined in the file // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT // distribution for complete text of the license and disclaimer of any warranty. // // Alternatively, this file may be used under the terms of Open CASCADE // commercial license or contractual agreement. // Lpa, le 7/02/92 #include #include #include #include #include // macro to get size of C array #define CARRAY_LENGTH(arr) (int)(sizeof(arr)/sizeof(arr[0])) void math_DoubleTab::Allocate() { Standard_Integer RowNumber = UppR - LowR + 1; Standard_Integer ColNumber = UppC - LowC + 1; Standard_Real** TheAddr = !isAddrAllocated? (Standard_Real**)&AddrBuf : (Standard_Real**) Standard::Allocate(RowNumber * sizeof(Standard_Real*)); Standard_Real* Address; if(isAllocated) Address = (Standard_Real*) Standard::Allocate(RowNumber * ColNumber * sizeof(Standard_Real)); else Address = (Standard_Real*) Addr; Address -= LowC; for (Standard_Integer Index = 0; Index < RowNumber; Index++) { TheAddr[Index] = Address; Address += ColNumber; } TheAddr -= LowR; Addr = (Standard_Address) TheAddr; } math_DoubleTab::math_DoubleTab(const Standard_Integer LowerRow, const Standard_Integer UpperRow, const Standard_Integer LowerCol, const Standard_Integer UpperCol) : Addr(Buf), isAddrAllocated(UpperRow - LowerRow + 1 > CARRAY_LENGTH(AddrBuf)), isAllocated((UpperRow - LowerRow + 1) * (UpperCol - LowerCol + 1) > CARRAY_LENGTH(Buf)), LowR(LowerRow), UppR(UpperRow), LowC(LowerCol), UppC(UpperCol) { Allocate(); } math_DoubleTab::math_DoubleTab(const Standard_Address Tab, const Standard_Integer LowerRow, const Standard_Integer UpperRow, const Standard_Integer LowerCol, const Standard_Integer UpperCol) : Addr(Tab), isAddrAllocated(UpperRow - LowerRow + 1 > CARRAY_LENGTH(AddrBuf)), isAllocated(Standard_False), LowR(LowerRow), UppR(UpperRow), LowC(LowerCol), UppC(UpperCol) { Allocate(); } void math_DoubleTab::Init(const Standard_Real InitValue) { for (Standard_Integer i = LowR; i <= UppR; i++) { for (Standard_Integer j = LowC; j <= UppC; j++) { ((Standard_Real**) Addr)[i][j] = InitValue; } } } math_DoubleTab::math_DoubleTab(const math_DoubleTab& Other) : Addr(Buf), isAddrAllocated(Other.UppR - Other.LowR + 1 > CARRAY_LENGTH(AddrBuf)), isAllocated((Other.UppR - Other.LowR + 1) * (Other.UppC - Other.LowC + 1) > CARRAY_LENGTH(Buf)), LowR(Other.LowR), UppR(Other.UppR), LowC(Other.LowC), UppC(Other.UppC) { Allocate(); Standard_Address target = (Standard_Address) &Value(LowR,LowC); Standard_Address source = (Standard_Address) &Other.Value(LowR,LowC); memmove(target,source, (int)((UppR - LowR + 1) * (UppC - LowC + 1) * sizeof(Standard_Real))); } void math_DoubleTab::Free() { // free the data if(isAllocated) { Standard_Address it = (Standard_Address)&Value(LowR,LowC); Standard::Free(it); } // free the pointers if(isAddrAllocated) { Standard_Address it = (Standard_Address)(((Standard_Real**)Addr) + LowR); Standard::Free (it); } Addr = 0; } void math_DoubleTab::SetLowerRow(const Standard_Integer LowerRow) { Standard_Real** TheAddr = (Standard_Real**)Addr; Addr = (Standard_Address) (TheAddr + LowR - LowerRow); UppR = UppR - LowR + LowerRow; LowR = LowerRow; } void math_DoubleTab::SetLowerCol(const Standard_Integer LowerCol) { Standard_Real** TheAddr = (Standard_Real**) Addr; for (Standard_Integer Index = LowR; Index <= UppR; Index++) { TheAddr[Index] = TheAddr[Index] + LowC - LowerCol; } UppC = UppC - LowC + LowerCol; LowC = LowerCol; }