// Created on: 1991-06-25 // Created by: JCV // Copyright (c) 1991-1999 Matra Datavision // Copyright (c) 1999-2014 OPEN CASCADE SAS // // This file is part of Open CASCADE Technology software library. // // This library is free software; you can redistribute it and/or modify it under // the terms of the GNU Lesser General Public License version 2.1 as published // by the Free Software Foundation, with special exception defined in the file // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT // distribution for complete text of the license and disclaimer of any warranty. // // Alternatively, this file may be used under the terms of Open CASCADE // commercial license or contractual agreement. // 24-Aug-95 : xab removed C1 and C2 test : appeller D1 et D2 // avec discernement ! // 19-09-97 : JPI correction derivee seconde #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include typedef Geom_OffsetCurve OffsetCurve; typedef Handle(Geom_OffsetCurve) Handle(OffsetCurve); typedef Geom_Curve Curve; typedef Handle(Geom_Curve) Handle(Curve); typedef Handle(Geom_Geometry) Handle(Geometry); typedef gp_Dir Dir; typedef gp_Pnt Pnt; typedef gp_Trsf Trsf; typedef gp_Vec Vec; typedef gp_XYZ XYZ; //ordre de derivation maximum pour la recherche de la premiere //derivee non nulle static const int maxDerivOrder = 3; static const Standard_Real MinStep = 1e-7; static const Standard_Real MyAngularToleranceForG1 = Precision::Angular(); //======================================================================= //function : Copy //purpose : //======================================================================= Handle(Geom_Geometry) Geom_OffsetCurve::Copy () const { Handle(OffsetCurve) C; C = new OffsetCurve (basisCurve, offsetValue, direction); return C; } //======================================================================= //function : Geom_OffsetCurve //purpose : Basis curve cannot be an Offset curve or trimmed from // offset curve. //======================================================================= Geom_OffsetCurve::Geom_OffsetCurve (const Handle(Geom_Curve)& theCurve, const Standard_Real theOffset, const gp_Dir& theDir, const Standard_Boolean isTheNotCheckC0) : direction(theDir), offsetValue(theOffset) { SetBasisCurve (theCurve, isTheNotCheckC0); } //======================================================================= //function : Reverse //purpose : //======================================================================= void Geom_OffsetCurve::Reverse () { basisCurve->Reverse(); offsetValue = -offsetValue; } //======================================================================= //function : ReversedParameter //purpose : //======================================================================= Standard_Real Geom_OffsetCurve::ReversedParameter( const Standard_Real U) const { return basisCurve->ReversedParameter( U); } //======================================================================= //function : Direction //purpose : //======================================================================= const gp_Dir& Geom_OffsetCurve::Direction () const { return direction; } //======================================================================= //function : SetDirection //purpose : //======================================================================= void Geom_OffsetCurve::SetDirection (const Dir& V) { direction = V; } //======================================================================= //function : SetOffsetValue //purpose : //======================================================================= void Geom_OffsetCurve::SetOffsetValue (const Standard_Real D) { offsetValue = D; } //======================================================================= //function : IsPeriodic //purpose : //======================================================================= Standard_Boolean Geom_OffsetCurve::IsPeriodic () const { return basisCurve->IsPeriodic(); } //======================================================================= //function : Period //purpose : //======================================================================= Standard_Real Geom_OffsetCurve::Period () const { return basisCurve->Period(); } //======================================================================= //function : SetBasisCurve //purpose : //======================================================================= void Geom_OffsetCurve::SetBasisCurve (const Handle(Curve)& C, const Standard_Boolean isNotCheckC0) { const Standard_Real aUf = C->FirstParameter(), aUl = C->LastParameter(); Handle(Curve) aCheckingCurve = Handle(Curve)::DownCast(C->Copy()); Standard_Boolean isTrimmed = Standard_False; while(aCheckingCurve->IsKind(STANDARD_TYPE(Geom_TrimmedCurve)) || aCheckingCurve->IsKind(STANDARD_TYPE(Geom_OffsetCurve))) { if (aCheckingCurve->IsKind(STANDARD_TYPE(Geom_TrimmedCurve))) { Handle(Geom_TrimmedCurve) aTrimC = Handle(Geom_TrimmedCurve)::DownCast(aCheckingCurve); aCheckingCurve = aTrimC->BasisCurve(); isTrimmed = Standard_True; } if (aCheckingCurve->IsKind(STANDARD_TYPE(Geom_OffsetCurve))) { Handle(Geom_OffsetCurve) aOC = Handle(Geom_OffsetCurve)::DownCast(aCheckingCurve); aCheckingCurve = aOC->BasisCurve(); Standard_Real PrevOff = aOC->Offset(); gp_Vec V1(aOC->Direction()); gp_Vec V2(direction); gp_Vec Vdir(PrevOff*V1 + offsetValue*V2); if (offsetValue >= 0.) { offsetValue = Vdir.Magnitude(); direction.SetXYZ(Vdir.XYZ()); } else { offsetValue = -Vdir.Magnitude(); direction.SetXYZ((-Vdir).XYZ()); } } } myBasisCurveContinuity = aCheckingCurve->Continuity(); Standard_Boolean isC0 = !isNotCheckC0 && (myBasisCurveContinuity == GeomAbs_C0); // Basis curve must be at least C1 if (isC0 && aCheckingCurve->IsKind(STANDARD_TYPE(Geom_BSplineCurve))) { Handle(Geom_BSplineCurve) aBC = Handle(Geom_BSplineCurve)::DownCast(aCheckingCurve); if(aBC->IsG1(aUf, aUl, MyAngularToleranceForG1)) { //Checking if basis curve has more smooth (C1, G2 and above) is not done. //It can be done in case of need. myBasisCurveContinuity = GeomAbs_G1; isC0 = Standard_False; } // Raise exception if still C0 if (isC0) Standard_ConstructionError::Raise("Offset on C0 curve"); } // if(isTrimmed) { basisCurve = new Geom_TrimmedCurve(aCheckingCurve, aUf, aUl); } else { basisCurve = aCheckingCurve; } } //======================================================================= //function : BasisCurve //purpose : //======================================================================= Handle(Curve) Geom_OffsetCurve::BasisCurve () const { return basisCurve; } //======================================================================= //function : Continuity //purpose : //======================================================================= GeomAbs_Shape Geom_OffsetCurve::Continuity () const { GeomAbs_Shape OffsetShape=GeomAbs_C0; switch (myBasisCurveContinuity) { case GeomAbs_C0 : OffsetShape = GeomAbs_C0; break; case GeomAbs_C1 : OffsetShape = GeomAbs_C0; break; case GeomAbs_C2 : OffsetShape = GeomAbs_C1; break; case GeomAbs_C3 : OffsetShape = GeomAbs_C2; break; case GeomAbs_CN : OffsetShape = GeomAbs_CN; break; case GeomAbs_G1 : OffsetShape = GeomAbs_G1; break; case GeomAbs_G2 : OffsetShape = GeomAbs_G2; break; } return OffsetShape; } //======================================================================= //function : D0 //purpose : //======================================================================= void Geom_OffsetCurve::D0 (const Standard_Real U, Pnt& P) const { gp_Pnt PBasis; gp_Vec VBasis; D0(U,P,PBasis,VBasis); } //======================================================================= //function : D1 //purpose : //======================================================================= void Geom_OffsetCurve::D1 (const Standard_Real U, Pnt& P, Vec& V1) const { gp_Pnt PBasis; gp_Vec V1Basis,V2Basis; D1(U,P,PBasis,V1,V1Basis,V2Basis); } //======================================================================= //function : D2 //purpose : //======================================================================= void Geom_OffsetCurve::D2 (const Standard_Real U, Pnt& P, Vec& V1, Vec& V2) const { gp_Pnt PBasis; gp_Vec V1Basis,V2Basis,V3Basis; D2(U,P,PBasis,V1,V2,V1Basis,V2Basis,V3Basis); } //======================================================================= //function : D3 //purpose : //======================================================================= void Geom_OffsetCurve::D3 (const Standard_Real theU, Pnt& P, Vec& theV1, Vec& V2, Vec& V3) const { // P(u) = p(u) + Offset * Ndir / R // with R = || p' ^ V|| and Ndir = P' ^ direction (local normal direction) // P'(u) = p'(u) + (Offset / R**2) * (DNdir/DU * R - Ndir * (DR/R)) // P"(u) = p"(u) + (Offset / R) * (D2Ndir/DU - DNdir * (2.0 * Dr/ R**2) + // Ndir * ( (3.0 * Dr**2 / R**4) - (D2r / R**2))) //P"'(u) = p"'(u) + (Offset / R) * (D3Ndir - (3.0 * Dr/R**2) * D2Ndir - // (3.0 * D2r / R2) * DNdir + (3.0 * Dr * Dr / R4) * DNdir - // (D3r/R2) * Ndir + (6.0 * Dr * Dr / R4) * Ndir + // (6.0 * Dr * D2r / R4) * Ndir - (15.0 * Dr* Dr* Dr /R6) * Ndir const Standard_Real aTol = gp::Resolution(); Standard_Boolean IsDirectionChange = Standard_False; basisCurve->D3 (theU, P, theV1, V2, V3); Vec V4 = basisCurve->DN (theU, 4); if(theV1.Magnitude() <= aTol) { const Standard_Real anUinfium = basisCurve->FirstParameter(); const Standard_Real anUsupremum = basisCurve->LastParameter(); const Standard_Real DivisionFactor = 1.e-3; Standard_Real du; if((anUsupremum >= RealLast()) || (anUinfium <= RealFirst())) du = 0.0; else du = anUsupremum-anUinfium; const Standard_Real aDelta = Max(du*DivisionFactor,MinStep); //Derivative is approximated by Taylor-series Standard_Integer anIndex = 1; //Derivative order Vec V; do { V = basisCurve->DN(theU,++anIndex); } while((V.Magnitude() <= aTol) && anIndex < maxDerivOrder); Standard_Real u; if(theU-anUinfium < aDelta) u = theU+aDelta; else u = theU-aDelta; Pnt P1, P2; basisCurve->D0(Min(theU, u),P1); basisCurve->D0(Max(theU, u),P2); Vec V1(P1,P2); Standard_Real aDirFactor = V.Dot(V1); if(aDirFactor < 0.0) { theV1 = -V; V2 = -basisCurve->DN (theU, anIndex + 1); V3 = -basisCurve->DN (theU, anIndex + 2); V4 = -basisCurve->DN (theU, anIndex + 3); IsDirectionChange = Standard_True; } else { theV1 = V; V2 = basisCurve->DN (theU, anIndex + 1); V3 = basisCurve->DN (theU, anIndex + 2); V4 = basisCurve->DN (theU, anIndex + 3); } }//if(V1.Magnitude() <= aTol) XYZ OffsetDir = direction.XYZ(); XYZ Ndir = (theV1.XYZ()).Crossed (OffsetDir); XYZ DNdir = (V2.XYZ()).Crossed (OffsetDir); XYZ D2Ndir = (V3.XYZ()).Crossed (OffsetDir); XYZ D3Ndir = (V4.XYZ()).Crossed (OffsetDir); Standard_Real R2 = Ndir.SquareModulus(); Standard_Real R = Sqrt (R2); Standard_Real R3 = R2 * R; Standard_Real R4 = R2 * R2; Standard_Real R5 = R3 * R2; Standard_Real R6 = R3 * R3; Standard_Real R7 = R5 * R2; Standard_Real Dr = Ndir.Dot (DNdir); Standard_Real D2r = Ndir.Dot (D2Ndir) + DNdir.Dot (DNdir); Standard_Real D3r = Ndir.Dot (D3Ndir) + 3.0 * DNdir.Dot (D2Ndir); if (R7 <= gp::Resolution()) { if (R6 <= gp::Resolution()) Geom_UndefinedDerivative::Raise(); // V3 = P"' (U) : D3Ndir.Subtract (D2Ndir.Multiplied (3.0 * Dr / R2)); D3Ndir.Subtract (DNdir.Multiplied (3.0 * ((D2r/R2) + (Dr*Dr/R4)))); D3Ndir.Add (Ndir.Multiplied (6.0*Dr*Dr/R4 + 6.0*Dr*D2r/R4 - 15.0*Dr*Dr*Dr/R6 - D3r)); D3Ndir.Multiply (offsetValue/R); if(IsDirectionChange) V3=-V3; V3.Add (Vec(D3Ndir)); // V2 = P" (U) : Standard_Real R4 = R2 * R2; D2Ndir.Subtract (DNdir.Multiplied (2.0 * Dr / R2)); D2Ndir.Subtract (Ndir.Multiplied ((3.0 * Dr * Dr / R4) - (D2r / R2))); D2Ndir.Multiply (offsetValue / R); V2.Add (Vec(D2Ndir)); // V1 = P' (U) : DNdir.Multiply(R); DNdir.Subtract (Ndir.Multiplied (Dr/R)); DNdir.Multiply (offsetValue/R2); theV1.Add (Vec(DNdir)); } else { // V3 = P"' (U) : D3Ndir.Divide (R); D3Ndir.Subtract (D2Ndir.Multiplied (3.0 * Dr / R3)); D3Ndir.Subtract (DNdir.Multiplied ((3.0 * ((D2r/R3) + (Dr*Dr)/R5)))); D3Ndir.Add (Ndir.Multiplied (6.0*Dr*Dr/R5 + 6.0*Dr*D2r/R5 - 15.0*Dr*Dr*Dr/R7 - D3r)); D3Ndir.Multiply (offsetValue); if(IsDirectionChange) V3=-V3; V3.Add (Vec(D3Ndir)); // V2 = P" (U) : D2Ndir.Divide (R); D2Ndir.Subtract (DNdir.Multiplied (2.0 * Dr / R3)); D2Ndir.Subtract (Ndir.Multiplied ((3.0 * Dr * Dr / R5) - (D2r / R3))); D2Ndir.Multiply (offsetValue); V2.Add (Vec(D2Ndir)); // V1 = P' (U) : DNdir.Multiply (offsetValue/R); DNdir.Subtract (Ndir.Multiplied (offsetValue*Dr/R3)); theV1.Add (Vec(DNdir)); } //P (U) : D0(theU,P); } //======================================================================= //function : DN //purpose : //======================================================================= Vec Geom_OffsetCurve::DN (const Standard_Real U, const Standard_Integer N) const { Standard_RangeError_Raise_if (N < 1, "Exception: " "Geom_OffsetCurve::DN(...). N<1."); gp_Vec VN, Vtemp; gp_Pnt Ptemp; switch (N) { case 1: D1( U, Ptemp, VN); break; case 2: D2( U, Ptemp, Vtemp, VN); break; case 3: D3( U, Ptemp, Vtemp, Vtemp, VN); break; default: Standard_NotImplemented::Raise("Exception: " "Derivative order is greater than 3. Cannot compute of derivative."); } return VN; } //======================================================================= //function : D0 //purpose : //======================================================================= void Geom_OffsetCurve::D0(const Standard_Real theU, gp_Pnt& theP, gp_Pnt& thePbasis, gp_Vec& theV1basis)const { const Standard_Real aTol = gp::Resolution(); basisCurve->D1 (theU, thePbasis, theV1basis); Standard_Real Ndu = theV1basis.Magnitude(); if(Ndu <= aTol) { const Standard_Real anUinfium = basisCurve->FirstParameter(); const Standard_Real anUsupremum = basisCurve->LastParameter(); const Standard_Real DivisionFactor = 1.e-3; Standard_Real du; if((anUsupremum >= RealLast()) || (anUinfium <= RealFirst())) du = 0.0; else du = anUsupremum-anUinfium; const Standard_Real aDelta = Max(du*DivisionFactor,MinStep); //Derivative is approximated by Taylor-series Standard_Integer anIndex = 1; //Derivative order gp_Vec V; do { V = basisCurve->DN(theU,++anIndex); Ndu = V.Magnitude(); } while((Ndu <= aTol) && anIndex < maxDerivOrder); Standard_Real u; if(theU-anUinfium < aDelta) u = theU+aDelta; else u = theU-aDelta; gp_Pnt P1, P2; basisCurve->D0(Min(theU, u),P1); basisCurve->D0(Max(theU, u),P2); gp_Vec V1(P1,P2); Standard_Real aDirFactor = V.Dot(V1); if(aDirFactor < 0.0) theV1basis = -V; else theV1basis = V; Ndu = theV1basis.Magnitude(); }//if(Ndu <= aTol) XYZ Ndir = (theV1basis.XYZ()).Crossed (direction.XYZ()); Standard_Real R = Ndir.Modulus(); if (R <= gp::Resolution()) Geom_UndefinedValue::Raise("Exception: Undefined normal vector " "because tangent vector has zero-magnitude!"); Ndir.Multiply (offsetValue/R); Ndir.Add (thePbasis.XYZ()); theP.SetXYZ(Ndir); } //======================================================================= //function : D1 //purpose : //======================================================================= void Geom_OffsetCurve::D1 ( const Standard_Real theU, Pnt& P , Pnt& PBasis , Vec& theV1, Vec& V1basis, Vec& V2basis) const { // P(u) = p(u) + Offset * Ndir / R // with R = || p' ^ V|| and Ndir = P' ^ direction (local normal direction) // P'(u) = p'(u) + (Offset / R**2) * (DNdir/DU * R - Ndir * (DR/R)) const Standard_Real aTol = gp::Resolution(); basisCurve->D2 (theU, PBasis, V1basis, V2basis); theV1 = V1basis; Vec V2 = V2basis; if(theV1.Magnitude() <= aTol) { const Standard_Real anUinfium = basisCurve->FirstParameter(); const Standard_Real anUsupremum = basisCurve->LastParameter(); const Standard_Real DivisionFactor = 1.e-3; Standard_Real du; if((anUsupremum >= RealLast()) || (anUinfium <= RealFirst())) du = 0.0; else du = anUsupremum-anUinfium; const Standard_Real aDelta = Max(du*DivisionFactor,MinStep); //Derivative is approximated by Taylor-series Standard_Integer anIndex = 1; //Derivative order Vec V; do { V = basisCurve->DN(theU,++anIndex); } while((V.Magnitude() <= aTol) && anIndex < maxDerivOrder); Standard_Real u; if(theU-anUinfium < aDelta) u = theU+aDelta; else u = theU-aDelta; Pnt P1, P2; basisCurve->D0(Min(theU, u),P1); basisCurve->D0(Max(theU, u),P2); Vec V1(P1,P2); Standard_Real aDirFactor = V.Dot(V1); if(aDirFactor < 0.0) { theV1 = -V; V2 = - basisCurve->DN (theU, anIndex+1); } else { theV1 = V; V2 = basisCurve->DN (theU, anIndex+1); } V2basis = V2; V1basis = theV1; }//if(theV1.Magnitude() <= aTol) XYZ OffsetDir = direction.XYZ(); XYZ Ndir = (theV1.XYZ()).Crossed (OffsetDir); XYZ DNdir = (V2.XYZ()).Crossed (OffsetDir); Standard_Real R2 = Ndir.SquareModulus(); Standard_Real R = Sqrt (R2); Standard_Real R3 = R * R2; Standard_Real Dr = Ndir.Dot (DNdir); if (R3 <= gp::Resolution()) { //We try another computation but the stability is not very good. if (R2 <= gp::Resolution()) Geom_UndefinedDerivative::Raise(); DNdir.Multiply(R); DNdir.Subtract (Ndir.Multiplied (Dr/R)); DNdir.Multiply (offsetValue/R2); theV1.Add (Vec(DNdir)); } else { // Same computation as IICURV in EUCLID-IS because the stability is // better DNdir.Multiply (offsetValue/R); DNdir.Subtract (Ndir.Multiplied (offsetValue * Dr/R3)); theV1.Add (Vec(DNdir)); } D0(theU,P); } //======================================================================= //function : D2 //purpose : //======================================================================= void Geom_OffsetCurve::D2 (const Standard_Real theU, Pnt& P , Pnt& PBasis , Vec& theV1 , Vec& V2 , Vec& V1basis, Vec& V2basis, Vec& V3basis) const { // P(u) = p(u) + Offset * Ndir / R // with R = || p' ^ V|| and Ndir = P' ^ direction (local normal direction) // P'(u) = p'(u) + (Offset / R**2) * (DNdir/DU * R - Ndir * (DR/R)) // P"(u) = p"(u) + (Offset / R) * (D2Ndir/DU - DNdir * (2.0 * Dr/ R**2) + // Ndir * ( (3.0 * Dr**2 / R**4) - (D2r / R**2))) const Standard_Real aTol = gp::Resolution(); Standard_Boolean IsDirectionChange = Standard_False; basisCurve->D3 (theU, PBasis, V1basis, V2basis, V3basis); theV1 = V1basis; V2 = V2basis; Vec V3 = V3basis; if(theV1.Magnitude() <= aTol) { const Standard_Real anUinfium = basisCurve->FirstParameter(); const Standard_Real anUsupremum = basisCurve->LastParameter(); const Standard_Real DivisionFactor = 1.e-3; Standard_Real du; if((anUsupremum >= RealLast()) || (anUinfium <= RealFirst())) du = 0.0; else du = anUsupremum-anUinfium; const Standard_Real aDelta = Max(du*DivisionFactor,MinStep); //Derivative is approximated by Taylor-series Standard_Integer anIndex = 1; //Derivative order Vec V; do { V = basisCurve->DN(theU,++anIndex); } while((V.Magnitude() <= aTol) && anIndex < maxDerivOrder); Standard_Real u; if(theU-anUinfium < aDelta) u = theU+aDelta; else u = theU-aDelta; Pnt P1, P2; basisCurve->D0(Min(theU, u),P1); basisCurve->D0(Max(theU, u),P2); Vec V1(P1,P2); Standard_Real aDirFactor = V.Dot(V1); if(aDirFactor < 0.0) { theV1 = -V; V2 = -basisCurve->DN (theU, anIndex+1); V3 = -basisCurve->DN (theU, anIndex + 2); IsDirectionChange = Standard_True; } else { theV1 = V; V2 = basisCurve->DN (theU, anIndex+1); V3 = basisCurve->DN (theU, anIndex + 2); } V2basis = V2; V1basis = theV1; }//if(V1.Magnitude() <= aTol) XYZ OffsetDir = direction.XYZ(); XYZ Ndir = (theV1.XYZ()).Crossed (OffsetDir); XYZ DNdir = (V2.XYZ()).Crossed (OffsetDir); XYZ D2Ndir = (V3.XYZ()).Crossed (OffsetDir); Standard_Real R2 = Ndir.SquareModulus(); Standard_Real R = Sqrt (R2); Standard_Real R3 = R2 * R; Standard_Real R4 = R2 * R2; Standard_Real R5 = R3 * R2; Standard_Real Dr = Ndir.Dot (DNdir); Standard_Real D2r = Ndir.Dot (D2Ndir) + DNdir.Dot (DNdir); if (R5 <= gp::Resolution()) { //We try another computation but the stability is not very good //dixit ISG. if (R4 <= gp::Resolution()) Geom_UndefinedDerivative::Raise(); // V2 = P" (U) : Standard_Real R4 = R2 * R2; D2Ndir.Subtract (DNdir.Multiplied (2.0 * Dr / R2)); D2Ndir.Add (Ndir.Multiplied (((3.0 * Dr * Dr)/R4) - (D2r/R2))); D2Ndir.Multiply (offsetValue / R); if(IsDirectionChange) V2=-V2; V2.Add (Vec(D2Ndir)); // V1 = P' (U) : DNdir.Multiply(R); DNdir.Subtract (Ndir.Multiplied (Dr/R)); DNdir.Multiply (offsetValue/R2); theV1.Add (Vec(DNdir)); } else { // Same computation as IICURV in EUCLID-IS because the stability is // better. // V2 = P" (U) : D2Ndir.Multiply (offsetValue/R); D2Ndir.Subtract (DNdir.Multiplied (2.0 * offsetValue * Dr / R3)); D2Ndir.Add (Ndir.Multiplied ( offsetValue * (((3.0 * Dr * Dr) / R5) - (D2r / R3)) ) ); if(IsDirectionChange) V2=-V2; V2.Add (Vec(D2Ndir)); // V1 = P' (U) : DNdir.Multiply (offsetValue/R); DNdir.Subtract (Ndir.Multiplied (offsetValue*Dr/R3)); theV1.Add (Vec(DNdir)); } //P (U) : D0(theU,P); } //======================================================================= //function : FirstParameter //purpose : //======================================================================= Standard_Real Geom_OffsetCurve::FirstParameter () const { return basisCurve->FirstParameter(); } //======================================================================= //function : LastParameter //purpose : //======================================================================= Standard_Real Geom_OffsetCurve::LastParameter () const { return basisCurve->LastParameter(); } //======================================================================= //function : Offset //purpose : //======================================================================= Standard_Real Geom_OffsetCurve::Offset () const { return offsetValue; } //======================================================================= //function : Value //purpose : //======================================================================= void Geom_OffsetCurve::Value (const Standard_Real theU, Pnt& theP, Pnt& thePbasis, Vec& theV1basis) const { if (myBasisCurveContinuity == GeomAbs_C0) Geom_UndefinedValue::Raise("Exception: Basis curve is C0 continuity!"); basisCurve->D1(theU, thePbasis, theV1basis); D0(theU,theP); } //======================================================================= //function : IsClosed //purpose : //======================================================================= Standard_Boolean Geom_OffsetCurve::IsClosed () const { gp_Pnt PF,PL; D0(FirstParameter(),PF); D0(LastParameter(),PL); return ( PF.Distance(PL) <= gp::Resolution()); } //======================================================================= //function : IsCN //purpose : //======================================================================= Standard_Boolean Geom_OffsetCurve::IsCN (const Standard_Integer N) const { Standard_RangeError_Raise_if (N < 0, " "); return basisCurve->IsCN (N + 1); } //======================================================================= //function : Transform //purpose : //======================================================================= void Geom_OffsetCurve::Transform (const Trsf& T) { basisCurve->Transform (T); direction.Transform(T); offsetValue *= T.ScaleFactor(); } //======================================================================= //function : TransformedParameter //purpose : //======================================================================= Standard_Real Geom_OffsetCurve::TransformedParameter(const Standard_Real U, const gp_Trsf& T) const { return basisCurve->TransformedParameter(U,T); } //======================================================================= //function : ParametricTransformation //purpose : //======================================================================= Standard_Real Geom_OffsetCurve::ParametricTransformation(const gp_Trsf& T) const { return basisCurve->ParametricTransformation(T); } //======================================================================= //function : GetBasisCurveContinuity //purpose : //======================================================================= GeomAbs_Shape Geom_OffsetCurve::GetBasisCurveContinuity() const { return myBasisCurveContinuity; }