// Created on: 1994-04-05 // Created by: Yves FRICAUD // Copyright (c) 1994-1999 Matra Datavision // Copyright (c) 1999-2012 OPEN CASCADE SAS // // The content of this file is subject to the Open CASCADE Technology Public // License Version 6.5 (the "License"). You may not use the content of this file // except in compliance with the License. Please obtain a copy of the License // at http://www.opencascade.org and read it completely before using this file. // // The Initial Developer of the Original Code is Open CASCADE S.A.S., having its // main offices at: 1, place des Freres Montgolfier, 78280 Guyancourt, France. // // The Original Code and all software distributed under the License is // distributed on an "AS IS" basis, without warranty of any kind, and the // Initial Developer hereby disclaims all such warranties, including without // limitation, any warranties of merchantability, fitness for a particular // purpose or non-infringement. Please see the License for the specific terms // and conditions governing the rights and limitations under the License. #include #include #include #include #include #include #include #include //============================================================================= //function : // purpose : //============================================================================= Bisector_FunctionInter::Bisector_FunctionInter () { } //============================================================================= //function : // purpose : //============================================================================= Bisector_FunctionInter::Bisector_FunctionInter (const Handle(Geom2d_Curve)& C , const Handle(Bisector_Curve)& B1 , const Handle(Bisector_Curve)& B2 ) { curve = C; bisector1 = B1; bisector2 = B2; } //============================================================================= //function : // purpose : //============================================================================= void Bisector_FunctionInter::Perform (const Handle(Geom2d_Curve)& C , const Handle(Bisector_Curve)& B1 , const Handle(Bisector_Curve)& B2 ) { curve = C; bisector1 = B1; bisector2 = B2; } //============================================================================= // function : Value // purpose : ///============================================================================= Standard_Boolean Bisector_FunctionInter::Value (const Standard_Real X, Standard_Real& F) { gp_Pnt2d PC = curve ->Value(X); gp_Pnt2d PB1 = bisector1 ->Value(X); gp_Pnt2d PB2 = bisector2 ->Value(X); F = PC.Distance(PB1) - PC.Distance(PB2); return Standard_True; } //============================================================================= //function : Derivative // purpose : //============================================================================= Standard_Boolean Bisector_FunctionInter::Derivative(const Standard_Real X, Standard_Real& D) { Standard_Real F; return Values (X,F,D); } //============================================================================= //function : Values // purpose : //============================================================================= Standard_Boolean Bisector_FunctionInter::Values (const Standard_Real X, Standard_Real& F, Standard_Real& D) { gp_Pnt2d PC, PB1, PB2; gp_Vec2d TC, TB1, TB2; Standard_Real F1, F2, DF1, DF2; curve ->D1(X,PC ,TC); bisector1 ->D1(X,PB1,TB1); bisector2 ->D1(X,PB2,TB2); F1 = PC.Distance(PB1); F2 = PC.Distance(PB2); F = F1 - F2; if (Abs(F1) < gp::Resolution()) { DF1 = Precision::Infinite(); } else { DF1 = ((PC.X() - PB1.X())*(TC.X() - TB1.X()) + (PC.Y() - PB1.Y())*(TC.Y() - TB1.Y()) )/F1; } if (Abs(F2) < gp::Resolution()) { DF2 = Precision::Infinite(); } else { DF2 = ((PC.X() - PB2.X())*(TC.X() - TB2.X()) + (PC.Y() - PB2.Y())*(TC.Y() - TB2.Y()) )/F2; } D = DF1 - DF2; return Standard_True; }