// Created on: 1998-09-22 // Created by: Philippe MANGIN // Copyright (c) 1998-1999 Matra Datavision // Copyright (c) 1999-2012 OPEN CASCADE SAS // // The content of this file is subject to the Open CASCADE Technology Public // License Version 6.5 (the "License"). You may not use the content of this file // except in compliance with the License. Please obtain a copy of the License // at http://www.opencascade.org and read it completely before using this file. // // The Initial Developer of the Original Code is Open CASCADE S.A.S., having its // main offices at: 1, place des Freres Montgolfier, 78280 Guyancourt, France. // // The Original Code and all software distributed under the License is // distributed on an "AS IS" basis, without warranty of any kind, and the // Initial Developer hereby disclaims all such warranties, including without // limitation, any warranties of merchantability, fitness for a particular // purpose or non-infringement. Please see the License for the specific terms // and conditions governing the rights and limitations under the License. #include #include #include GeomLib_PolyFunc::GeomLib_PolyFunc(const math_Vector& Coeffs) :myCoeffs(1, Coeffs.Length()-1) { // On construit le polynome derive for (Standard_Integer ii=1; ii<=myCoeffs.Length(); ii++) myCoeffs(ii) = ii*Coeffs(ii+1); } Standard_Boolean GeomLib_PolyFunc::Value(const Standard_Real X, Standard_Real& F) { Standard_Real * coeff = &myCoeffs(1); Standard_Real * ff = &F; PLib::EvalPolynomial(X, 0, myCoeffs.Length()-1, 1, coeff[0], ff[0]); return Standard_True; } Standard_Boolean GeomLib_PolyFunc::Derivative(const Standard_Real X, Standard_Real& D) { Standard_Real * coeff = &myCoeffs(1); math_Vector Aux(1, 2); Standard_Real * ff = &Aux(1); PLib::EvalPolynomial(X, 1, myCoeffs.Length()-1, 1, coeff[0], ff[0]); D = Aux(2); return Standard_True; } Standard_Boolean GeomLib_PolyFunc::Values(const Standard_Real X, Standard_Real& F, Standard_Real& D) { Standard_Real * coeff = &myCoeffs(1); math_Vector Aux(1, 2); Standard_Real * ff = &Aux(1); PLib::EvalPolynomial(X, 1, myCoeffs.Length()-1, 1, coeff[0], ff[0]); F = Aux(1); D = Aux(2); return Standard_True; }