// Copyright (c) 1995-1999 Matra Datavision // Copyright (c) 1999-2014 OPEN CASCADE SAS // // This file is part of Open CASCADE Technology software library. // // This library is free software; you can redistribute it and/or modify it under // the terms of the GNU Lesser General Public License version 2.1 as published // by the Free Software Foundation, with special exception defined in the file // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT // distribution for complete text of the license and disclaimer of any warranty. // // Alternatively, this file may be used under the terms of Open CASCADE // commercial license or contractual agreement. //JCV 16/10/91 #include #include #include #include #include static const Standard_Integer TheUDegree = 2; static const Standard_Integer TheVDegree = 1; static const Standard_Integer TheNbUKnots = 5; static const Standard_Integer TheNbVKnots = 2; static const Standard_Integer TheNbUPoles = 9; static const Standard_Integer TheNbVPoles = 2; static void ComputePoles( const Standard_Real R, const Standard_Real A, const Standard_Real U1, const Standard_Real U2, const Standard_Real V1, const Standard_Real V2, TColgp_Array2OfPnt& Poles) { Standard_Real deltaU = U2 - U1; Standard_Integer i; // Number of spans : maximum opening = 150 degrees ( = PI / 1.2 rds) Standard_Integer nbUSpans = (Standard_Integer)IntegerPart( 1.2 * deltaU / M_PI) + 1; Standard_Real AlfaU = deltaU / ( nbUSpans * 2); Standard_Real x[TheNbVPoles]; Standard_Real z[TheNbVPoles]; x[0] = R + V1 * Sin(A); z[0] = V1 * Cos(A); x[1] = R + V2 * Sin(A); z[1] = V2 * Cos(A); Standard_Real UStart = U1; Poles(1,1) = gp_Pnt(x[0]*Cos(UStart),x[0]*Sin(UStart),z[0]); Poles(1,2) = gp_Pnt(x[1]*Cos(UStart),x[1]*Sin(UStart),z[1]); for ( i = 1; i <= nbUSpans; i++) { Poles( 2*i, 1) = gp_Pnt( x[0] * Cos(UStart+AlfaU) / Cos(AlfaU), x[0] * Sin(UStart+AlfaU) / Cos(AlfaU), z[0] ); Poles( 2*i, 2) = gp_Pnt( x[1] * Cos(UStart+AlfaU) / Cos(AlfaU), x[1] * Sin(UStart+AlfaU) / Cos(AlfaU), z[1] ); Poles(2*i+1,1) = gp_Pnt( x[0] * Cos(UStart+2*AlfaU), x[0] * Sin(UStart+2*AlfaU), z[0] ); Poles(2*i+1,2) = gp_Pnt( x[1] * Cos(UStart+2*AlfaU), x[1] * Sin(UStart+2*AlfaU), z[1] ); UStart += 2*AlfaU; } } //======================================================================= //function : Convert_ConeToBSplineSurface //purpose : //======================================================================= Convert_ConeToBSplineSurface::Convert_ConeToBSplineSurface (const gp_Cone& C , const Standard_Real U1, const Standard_Real U2, const Standard_Real V1, const Standard_Real V2 ) : Convert_ElementarySurfaceToBSplineSurface (TheNbUPoles, TheNbVPoles, TheNbUKnots, TheNbVKnots, TheUDegree , TheVDegree ) { Standard_Real deltaU = U2 - U1; Standard_DomainError_Raise_if( (Abs(V2-V1) <= Abs(Epsilon(V1))) || (deltaU > 2*M_PI) || (deltaU < 0. ), "Convert_ConeToBSplineSurface"); isuperiodic = Standard_False; isvperiodic = Standard_False; Standard_Integer i,j; // construction of cone in the reference mark xOy. // Number of spans : maximum opening = 150 degrees ( = PI / 1.2 rds) Standard_Integer nbUSpans = (Standard_Integer)IntegerPart( 1.2 * deltaU / M_PI) + 1; Standard_Real AlfaU = deltaU / ( nbUSpans * 2); nbUPoles = 2 * nbUSpans + 1; nbUKnots = nbUSpans + 1; nbVPoles = 2; nbVKnots = 2; Standard_Real R = C.RefRadius(); Standard_Real A = C.SemiAngle(); ComputePoles( R, A, U1, U2, V1, V2, poles); for ( i = 1; i<= nbUKnots; i++) { uknots(i) = U1 + (i-1) * 2 * AlfaU; umults(i) = 2; } umults(1)++; umults(nbUKnots)++; vknots(1) = V1; vmults(1) = 2; vknots(2) = V2; vmults(2) = 2; // Replace the bspline in the mark of the sphere. // and calculate the weight of the bspline. Standard_Real W1; gp_Trsf Trsf; Trsf.SetTransformation( C.Position(), gp::XOY()); for ( i = 1; i <= nbUPoles; i++) { if ( i % 2 == 0) W1 = Cos(AlfaU); else W1 = 1.; for ( j = 1; j <= nbVPoles; j++) { weights( i, j) = W1; poles( i, j).Transform( Trsf); } } } //======================================================================= //function : Convert_ConeToBSplineSurface //purpose : //======================================================================= Convert_ConeToBSplineSurface::Convert_ConeToBSplineSurface (const gp_Cone& C , const Standard_Real V1, const Standard_Real V2 ) : Convert_ElementarySurfaceToBSplineSurface (TheNbUPoles, TheNbVPoles, TheNbUKnots, TheNbVKnots, TheUDegree, TheVDegree) { Standard_DomainError_Raise_if( Abs(V2-V1) <= Abs(Epsilon(V1)), "Convert_ConeToBSplineSurface"); Standard_Integer i,j; isuperiodic = Standard_True; isvperiodic = Standard_False; // construction of the cone in the reference mark xOy. Standard_Real R = C.RefRadius(); Standard_Real A = C.SemiAngle(); ComputePoles( R, A, 0., 2.*M_PI, V1, V2, poles); nbUPoles = 6; nbUKnots = 4; nbVPoles = 2; nbVKnots = 2; for ( i = 1; i <= nbUKnots; i++) { uknots(i) = ( i-1) * 2. * M_PI /3.; umults(i) = 2; } vknots(1) = V1; vmults(1) = 2; vknots(2) = V2; vmults(2) = 2; // replace bspline in the mark of the cone. // and calculate the weight of bspline. Standard_Real W; gp_Trsf Trsf; Trsf.SetTransformation( C.Position(), gp::XOY()); for ( i = 1; i <= nbUPoles; i++) { if ( i % 2 == 0) W = 0.5; // = Cos(pi /3) else W = 1.; for ( j = 1; j <= nbVPoles; j++) { weights( i, j) = W; poles( i, j).Transform( Trsf); } } }