// Copyright (c) 1991-1999 Matra Datavision // Copyright (c) 1999-2014 OPEN CASCADE SAS // // This file is part of Open CASCADE Technology software library. // // This library is free software; you can redistribute it and/or modify it under // the terms of the GNU Lesser General Public License version 2.1 as published // by the Free Software Foundation, with special exception defined in the file // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT // distribution for complete text of the license and disclaimer of any warranty. // // Alternatively, this file may be used under the terms of Open CASCADE // commercial license or contractual agreement. #ifndef _gp_Cone_HeaderFile #define _gp_Cone_HeaderFile #include #include #include #include #include #include #include #include class Standard_ConstructionError; class gp_Ax3; class gp_Ax1; class gp_Pnt; class gp_Ax2; class gp_Trsf; class gp_Vec; //! Defines an infinite conical surface. //! A cone is defined by its half-angle (can be negative) at the apex and //! positioned in space with a coordinate system (a gp_Ax3 //! object) and a "reference radius" where: //! - the "main Axis" of the coordinate system is the axis of revolution of the cone, //! - the plane defined by the origin, the "X Direction" and //! the "Y Direction" of the coordinate system is the //! reference plane of the cone; the intersection of the //! cone with this reference plane is a circle of radius //! equal to the reference radius, //! if the half-angle is positive, the apex of the cone is on //! the negative side of the "main Axis" of the coordinate //! system. If the half-angle is negative, the apex is on the positive side. //! This coordinate system is the "local coordinate system" of the cone. //! Note: when a gp_Cone cone is converted into a //! Geom_ConicalSurface cone, some implicit properties of //! its local coordinate system are used explicitly: //! - its origin, "X Direction", "Y Direction" and "main //! Direction" are used directly to define the parametric //! directions on the cone and the origin of the parameters, //! - its implicit orientation (right-handed or left-handed) //! gives the orientation (direct or indirect) of the //! Geom_ConicalSurface cone. //! See Also //! gce_MakeCone which provides functions for more //! complex cone constructions //! Geom_ConicalSurface which provides additional //! functions for constructing cones and works, in particular, //! with the parametric equations of cones gp_Ax3 class gp_Cone { public: DEFINE_STANDARD_ALLOC //! Creates an indefinite Cone. gp_Cone(); //! Creates an infinite conical surface. A3 locates the cone //! in the space and defines the reference plane of the surface. //! Ang is the conical surface semi-angle. Its absolute value is in range //! ]0, PI/2[. //! Radius is the radius of the circle in the reference plane of //! the cone. //! Raises ConstructionError //! * if Radius is lower than 0.0 //! * Abs(Ang) < Resolution from gp or Abs(Ang) >= (PI/2) - Resolution. gp_Cone(const gp_Ax3& A3, const Standard_Real Ang, const Standard_Real Radius); //! Changes the symmetry axis of the cone. Raises ConstructionError //! the direction of A1 is parallel to the "XDirection" //! of the coordinate system of the cone. void SetAxis (const gp_Ax1& A1); //! Changes the location of the cone. void SetLocation (const gp_Pnt& Loc); //! Changes the local coordinate system of the cone. //! This coordinate system defines the reference plane of the cone. void SetPosition (const gp_Ax3& A3); //! Changes the radius of the cone in the reference plane of //! the cone. //! Raised if R < 0.0 void SetRadius (const Standard_Real R); //! Changes the semi-angle of the cone. //! Semi-angle can be negative. Its absolute value //! Abs(Ang) is in range ]0,PI/2[. //! Raises ConstructionError if Abs(Ang) < Resolution from gp or Abs(Ang) >= PI/2 - Resolution void SetSemiAngle (const Standard_Real Ang); //! Computes the cone's top. The Apex of the cone is on the //! negative side of the symmetry axis of the cone. gp_Pnt Apex() const; //! Reverses the U parametrization of the cone //! reversing the YAxis. void UReverse(); //! Reverses the V parametrization of the cone reversing the ZAxis. void VReverse(); //! Returns true if the local coordinate system of this cone is right-handed. Standard_Boolean Direct() const; //! returns the symmetry axis of the cone. const gp_Ax1& Axis() const; //! Computes the coefficients of the implicit equation of the quadric //! in the absolute cartesian coordinates system : //! A1.X**2 + A2.Y**2 + A3.Z**2 + 2.(B1.X.Y + B2.X.Z + B3.Y.Z) + //! 2.(C1.X + C2.Y + C3.Z) + D = 0.0 Standard_EXPORT void Coefficients (Standard_Real& A1, Standard_Real& A2, Standard_Real& A3, Standard_Real& B1, Standard_Real& B2, Standard_Real& B3, Standard_Real& C1, Standard_Real& C2, Standard_Real& C3, Standard_Real& D) const; //! returns the "Location" point of the cone. const gp_Pnt& Location() const; //! Returns the local coordinates system of the cone. const gp_Ax3& Position() const; //! Returns the radius of the cone in the reference plane. Standard_Real RefRadius() const; //! Returns the half-angle at the apex of this cone. //! Attention! Semi-angle can be negative. Standard_Real SemiAngle() const; //! Returns the XAxis of the reference plane. gp_Ax1 XAxis() const; //! Returns the YAxis of the reference plane. gp_Ax1 YAxis() const; Standard_EXPORT void Mirror (const gp_Pnt& P); //! Performs the symmetrical transformation of a cone //! with respect to the point P which is the center of the //! symmetry. Standard_EXPORT Standard_NODISCARD gp_Cone Mirrored (const gp_Pnt& P) const; Standard_EXPORT void Mirror (const gp_Ax1& A1); //! Performs the symmetrical transformation of a cone with //! respect to an axis placement which is the axis of the //! symmetry. Standard_EXPORT Standard_NODISCARD gp_Cone Mirrored (const gp_Ax1& A1) const; Standard_EXPORT void Mirror (const gp_Ax2& A2); //! Performs the symmetrical transformation of a cone with respect //! to a plane. The axis placement A2 locates the plane of the //! of the symmetry : (Location, XDirection, YDirection). Standard_EXPORT Standard_NODISCARD gp_Cone Mirrored (const gp_Ax2& A2) const; void Rotate (const gp_Ax1& A1, const Standard_Real Ang); //! Rotates a cone. A1 is the axis of the rotation. //! Ang is the angular value of the rotation in radians. Standard_NODISCARD gp_Cone Rotated (const gp_Ax1& A1, const Standard_Real Ang) const; void Scale (const gp_Pnt& P, const Standard_Real S); //! Scales a cone. S is the scaling value. //! The absolute value of S is used to scale the cone Standard_NODISCARD gp_Cone Scaled (const gp_Pnt& P, const Standard_Real S) const; void Transform (const gp_Trsf& T); //! Transforms a cone with the transformation T from class Trsf. Standard_NODISCARD gp_Cone Transformed (const gp_Trsf& T) const; void Translate (const gp_Vec& V); //! Translates a cone in the direction of the vector V. //! The magnitude of the translation is the vector's magnitude. Standard_NODISCARD gp_Cone Translated (const gp_Vec& V) const; void Translate (const gp_Pnt& P1, const gp_Pnt& P2); //! Translates a cone from the point P1 to the point P2. Standard_NODISCARD gp_Cone Translated (const gp_Pnt& P1, const gp_Pnt& P2) const; protected: private: gp_Ax3 pos; Standard_Real radius; Standard_Real semiAngle; }; #include #endif // _gp_Cone_HeaderFile