puts "=======================" puts "Test for Circle/Sphere extrema algorithm" puts "No intersection cases - one minimum solution should be found" puts "=======================" puts "" # Make sphere set x0 0. set y0 0. set z0 0. set sph_radius 10. sphere s $x0 $y0 $z0 $sph_radius # The circles will be made on the distance from the surface # as intersection of pairs of inner and outer spheres with the plane # Set the number of iterations set nbstep 5 # Rotation angle set angle [expr 180. / $nbstep] # Set the number of Inner/Outer spheres in one direction set nbpairs 1 # Set the delta for the radius of inner circle set delta_radius [expr $sph_radius * 0.9 / (2 * $nbpairs)] # Step for sampling of the circle set dt [expr [dval 2*pi] / $nbstep] # Iteration step set iStep 1 for {set i 1} {$i <= $nbpairs} {incr i} { # Define the inner circle set circ_radius [expr $i * $delta_radius] circle c $x0 $y0 $z0 0 0 1 $circ_radius set diff [expr $sph_radius - $circ_radius] # Distance between inner sphere on circle and initial sphere set real_dist [expr $sph_radius - 2*$circ_radius] # Circle will be rotated around the line line rotation_line $x0 $y0 $z0 1 0 0 # Line rotation for {set j 1} {$j <= $nbstep} {incr j} { rotate rotation_line $x0 $y0 $z0 0 0 1 $angle # Get direction for circle's rotation regexp {Axis :([-0-9.+eE]*), ([-0-9.+eE]*), ([-0-9.+eE]*)} [dump rotation_line] full dx dy dz # Circle rotation copy c c_rotated for {set k 1} {$k <= $nbstep} {incr k} { rotate c_rotated 0 0 0 $dx $dy $dz $angle # Sampling of the circle for {set n 1} {$n <= $nbstep} {incr n} { cvalue c_rotated $n*$dt x1 y1 z1 set x1 [dval x1] set y1 [dval y1] set z1 [dval z1] # Normalize the vector set dtx [expr ($x1 - $x0) / $circ_radius] set dty [expr ($y1 - $y0) / $circ_radius] set dtz [expr ($z1 - $z0) / $circ_radius] # Create inner and outer spheres set iC 1 repeat 2 { sphere s_to_int $x1 $y1 $z1 $circ_radius # Define the point closest to the initial sphere set x_sol [expr $x1 + $iC * $circ_radius * $dtx] set y_sol [expr $y1 + $iC * $circ_radius * $dty] set z_sol [expr $z1 + $iC * $circ_radius * $dtz] # Intersect the sphere with the plane originated in closes point # Make the sampling of the sphere to define section plane's direction bounds s_to_int umin umax vmin vmax set du [dval (umax-umin)/$nbstep] set dv [dval (vmax-vmin)/$nbstep] for {set u 1} {$u <= $nbstep} {incr u} { for {set v 1} {$v <= $nbstep} {incr v} { # Get point on surface svalue s_to_int [dval umin+$u*$du] [dval vmin+$v*$dv] xs ys zs # Check that it is not the same point set sqdist [dval (xs-$x_sol)*(xs-$x_sol)+(ys-$y_sol)*(ys-$y_sol)+(zs-$z_sol)*(zs-$z_sol)] if {$sqdist < 1.e-16} { # Skip the sampling point continue; } # Create the intersection plane plane p_int $x_sol $y_sol $z_sol [dval xs-$x_sol] [dval ys-$y_sol] [dval zs-$z_sol] # Intersect the sphere by plane to obtain the circle foreach c_int [intersect c_inter s_to_int p_int] { # Check if the circle contains the point if {![regexp "Point on curve" [proj $c_int $x_sol $y_sol $z_sol]]} { if {[lindex [length ext_1] end] >= 1.e-7} { # run extrema - one of the ends of the curve should be the solution set log [extrema $c_int s 1] if {[regexp "prm_1_1" $log]} { # get parameters of the curve bounds $c_int fp lp if {[dval prm_1_1-fp] > 1.e-7 && [dval lp-prm_1_1] > 1.e-7} { puts "Error: Extrema has failed to find the minimal distance on step $iStep" } } else { puts "Error: Extrema has failed to find the minimal distance on step $iStep" } # save each circle if necessary # copy $c_int c_$iStep incr iStep continue } } # Make extrema computation set log [extrema $c_int s] # save each circle if necessary # copy $c_int c_$iStep if {![regexp "ext_1" $log]} { puts "Error: Extrema has failed to find the minimal distance on step $iStep" } else { set ext_dist [lindex [length ext_1] end] checkreal "Step $iStep, min distance " $ext_dist $real_dist 1.e-7 1.e-7 } incr iStep } } } # prepare for the outer sphere set x1 [expr $x1 + 2 * $diff * $dtx] set y1 [expr $y1 + 2 * $diff * $dty] set z1 [expr $z1 + 2 * $diff * $dtz] set iC -1 } } } } }