// Created on: 1993-03-10 // Created by: JCV // Copyright (c) 1993-1999 Matra Datavision // Copyright (c) 1999-2014 OPEN CASCADE SAS // // This file is part of Open CASCADE Technology software library. // // This library is free software; you can redistribute it and/or modify it under // the terms of the GNU Lesser General Public License version 2.1 as published // by the Free Software Foundation, with special exception defined in the file // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT // distribution for complete text of the license and disclaimer of any warranty. // // Alternatively, this file may be used under the terms of Open CASCADE // commercial license or contractual agreement. #ifndef _Geom_Surface_HeaderFile #define _Geom_Surface_HeaderFile #include class gp_Trsf; class gp_GTrsf2d; class gp_Pnt; class gp_Vec; class Geom_Surface; DEFINE_STANDARD_HANDLE(Geom_Surface, Geom_Geometry) //! Describes the common behavior of surfaces in 3D space. //! The Geom package provides many implementations of concrete derived surfaces, //! such as planes, cylinders, cones, spheres and tori, surfaces of linear extrusion, //! surfaces of revolution, Bezier and BSpline surfaces, and so on. //! The key characteristic of these surfaces is that they are parameterized. //! Geom_Surface demonstrates: //! - how to work with the parametric equation of a surface //! to compute the point of parameters (u, v), and, at this point, the 1st, 2nd ... Nth derivative; //! - how to find global information about a surface in //! each parametric direction (for example, level of continuity, whether the surface is closed, //! its periodicity, the bounds of the parameters and so on); //! - how the parameters change when geometric transformations are applied to the surface, //! or the orientation is modified. //! //! Note that all surfaces must have a geometric continuity, and any surface is at least "C0". //! Generally, continuity is checked at construction time or when the curve is edited. //! Where this is not the case, the documentation makes this explicit. //! //! Warning //! The Geom package does not prevent the construction of //! surfaces with null areas, or surfaces which self-intersect. class Geom_Surface : public Geom_Geometry { public: //! Reverses the U direction of parametrization of . //! The bounds of the surface are not modified. Standard_EXPORT virtual void UReverse() = 0; //! Reverses the U direction of parametrization of . //! The bounds of the surface are not modified. //! A copy of is returned. Standard_NODISCARD Standard_EXPORT Handle(Geom_Surface) UReversed() const; //! Returns the parameter on the Ureversed surface for //! the point of parameter U on . //! @code //! me->UReversed()->Value(me->UReversedParameter(U),V) //! @endcode //! is the same point as //! @code //! me->Value(U,V) //! @endcode Standard_EXPORT virtual Standard_Real UReversedParameter (const Standard_Real U) const = 0; //! Reverses the V direction of parametrization of . //! The bounds of the surface are not modified. Standard_EXPORT virtual void VReverse() = 0; //! Reverses the V direction of parametrization of . //! The bounds of the surface are not modified. //! A copy of is returned. Standard_NODISCARD Standard_EXPORT Handle(Geom_Surface) VReversed() const; //! Returns the parameter on the Vreversed surface for //! the point of parameter V on . //! @code //! me->VReversed()->Value(U,me->VReversedParameter(V)) //! @endcode //! is the same point as //! @code //! me->Value(U,V) //! @endcode Standard_EXPORT virtual Standard_Real VReversedParameter (const Standard_Real V) const = 0; //! Computes the parameters on the transformed surface for //! the transform of the point of parameters U,V on . //! @code //! me->Transformed(T)->Value(U',V') //! @endcode //! is the same point as //! @code //! me->Value(U,V).Transformed(T) //! @endcode //! Where U',V' are the new values of U,V after calling //! @code //! me->TransformParameters(U,V,T) //! @endcode //! This method does not change and //! //! It can be redefined. For example on the Plane, //! Cylinder, Cone, Revolved and Extruded surfaces. Standard_EXPORT virtual void TransformParameters (Standard_Real& U, Standard_Real& V, const gp_Trsf& T) const; //! Returns a 2d transformation used to find the new //! parameters of a point on the transformed surface. //! @code //! me->Transformed(T)->Value(U',V') //! @endcode //! is the same point as //! @code //! me->Value(U,V).Transformed(T) //! @endcode //! Where U',V' are obtained by transforming U,V with //! the 2d transformation returned by //! @code //! me->ParametricTransformation(T) //! @endcode //! This method returns an identity transformation //! //! It can be redefined. For example on the Plane, //! Cylinder, Cone, Revolved and Extruded surfaces. Standard_EXPORT virtual gp_GTrsf2d ParametricTransformation (const gp_Trsf& T) const; //! Returns the parametric bounds U1, U2, V1 and V2 of this surface. //! If the surface is infinite, this function can return a value //! equal to Precision::Infinite: instead of Standard_Real::LastReal. Standard_EXPORT virtual void Bounds (Standard_Real& U1, Standard_Real& U2, Standard_Real& V1, Standard_Real& V2) const = 0; //! Checks whether this surface is closed in the u parametric direction. //! Returns true if, in the u parametric direction: //! taking uFirst and uLast as the parametric bounds in //! the u parametric direction, for each parameter v, //! the distance between the points P(uFirst, v) and //! P(uLast, v) is less than or equal to gp::Resolution(). Standard_EXPORT virtual Standard_Boolean IsUClosed() const = 0; //! Checks whether this surface is closed in the u parametric direction. //! Returns true if, in the v parametric direction: //! taking vFirst and vLast as the parametric bounds in the v parametric direction, //! for each parameter u, the distance between the points //! P(u, vFirst) and P(u, vLast) is less than or equal to gp::Resolution(). Standard_EXPORT virtual Standard_Boolean IsVClosed() const = 0; //! Checks if this surface is periodic in the u parametric direction. //! Returns true if: //! - this surface is closed in the u parametric direction, and //! - there is a constant T such that the distance //! between the points P (u, v) and P (u + T, v) //! (or the points P (u, v) and P (u, v + T)) is less than or equal to gp::Resolution(). //! //! Note: T is the parametric period in the u parametric direction. Standard_EXPORT virtual Standard_Boolean IsUPeriodic() const = 0; //! Returns the period of this surface in the u parametric direction. //! Raises if the surface is not uperiodic. Standard_EXPORT virtual Standard_Real UPeriod() const; //! Checks if this surface is periodic in the v parametric direction. //! Returns true if: //! - this surface is closed in the v parametric direction, and //! - there is a constant T such that the distance //! between the points P (u, v) and P (u + T, v) //! (or the points P (u, v) and P (u, v + T)) is less than or equal to gp::Resolution(). //! //! Note: T is the parametric period in the v parametric direction. Standard_EXPORT virtual Standard_Boolean IsVPeriodic() const = 0; //! Returns the period of this surface in the v parametric direction. //! raises if the surface is not vperiodic. Standard_EXPORT virtual Standard_Real VPeriod() const; //! Computes the U isoparametric curve. Standard_EXPORT virtual Handle(Geom_Curve) UIso (const Standard_Real U) const = 0; //! Computes the V isoparametric curve. Standard_EXPORT virtual Handle(Geom_Curve) VIso (const Standard_Real V) const = 0; //! Returns the Global Continuity of the surface in direction U and V : //! - C0: only geometric continuity, //! - C1: continuity of the first derivative all along the surface, //! - C2: continuity of the second derivative all along the surface, //! - C3: continuity of the third derivative all along the surface, //! - G1: tangency continuity all along the surface, //! - G2: curvature continuity all along the surface, //! - CN: the order of continuity is infinite. //! //! Example: //! If the surface is C1 in the V parametric direction and C2 //! in the U parametric direction Shape = C1. Standard_EXPORT virtual GeomAbs_Shape Continuity() const = 0; //! Returns the order of continuity of the surface in the U parametric direction. //! Raised if N < 0. Standard_EXPORT virtual Standard_Boolean IsCNu (const Standard_Integer N) const = 0; //! Returns the order of continuity of the surface in the V parametric direction. //! Raised if N < 0. Standard_EXPORT virtual Standard_Boolean IsCNv (const Standard_Integer N) const = 0; //! Computes the point of parameter U,V on the surface. //! //! Raised only for an "OffsetSurface" if it is not possible to //! compute the current point. Standard_EXPORT virtual void D0 (const Standard_Real U, const Standard_Real V, gp_Pnt& P) const = 0; //! Computes the point P and the first derivatives in the directions U and V at this point. //! Raised if the continuity of the surface is not C1. //! //! Tip: use GeomLib::NormEstim() to calculate surface normal at specified (U, V) point. Standard_EXPORT virtual void D1 (const Standard_Real U, const Standard_Real V, gp_Pnt& P, gp_Vec& D1U, gp_Vec& D1V) const = 0; //! Computes the point P, the first and the second derivatives in //! the directions U and V at this point. //! Raised if the continuity of the surface is not C2. Standard_EXPORT virtual void D2 (const Standard_Real U, const Standard_Real V, gp_Pnt& P, gp_Vec& D1U, gp_Vec& D1V, gp_Vec& D2U, gp_Vec& D2V, gp_Vec& D2UV) const = 0; //! Computes the point P, the first,the second and the third //! derivatives in the directions U and V at this point. //! Raised if the continuity of the surface is not C2. Standard_EXPORT virtual void D3 (const Standard_Real U, const Standard_Real V, gp_Pnt& P, gp_Vec& D1U, gp_Vec& D1V, gp_Vec& D2U, gp_Vec& D2V, gp_Vec& D2UV, gp_Vec& D3U, gp_Vec& D3V, gp_Vec& D3UUV, gp_Vec& D3UVV) const = 0; //! Computes the derivative of order Nu in the direction U and Nv in the direction V at the point P(U, V). //! //! Raised if the continuity of the surface is not CNu in the U direction or not CNv in the V direction. //! Raised if Nu + Nv < 1 or Nu < 0 or Nv < 0. Standard_EXPORT virtual gp_Vec DN (const Standard_Real U, const Standard_Real V, const Standard_Integer Nu, const Standard_Integer Nv) const = 0; //! Computes the point of parameter (U, V) on the surface. //! //! It is implemented with D0. //! Tip: use GeomLib::NormEstim() to calculate surface normal at specified (U, V) point. //! //! Raised only for an "OffsetSurface" if it is not possible to compute the current point. Standard_EXPORT gp_Pnt Value (const Standard_Real U, const Standard_Real V) const; //! Dumps the content of me into the stream Standard_EXPORT virtual void DumpJson (Standard_OStream& theOStream, Standard_Integer theDepth = -1) const Standard_OVERRIDE; DEFINE_STANDARD_RTTIEXT(Geom_Surface,Geom_Geometry) }; #endif // _Geom_Surface_HeaderFile