// Copyright (c) 1995-1999 Matra Datavision // Copyright (c) 1999-2014 OPEN CASCADE SAS // // This file is part of Open CASCADE Technology software library. // // This library is free software; you can redistribute it and/or modify it under // the terms of the GNU Lesser General Public License version 2.1 as published // by the Free Software Foundation, with special exception defined in the file // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT // distribution for complete text of the license and disclaimer of any warranty. // // Alternatively, this file may be used under the terms of Open CASCADE // commercial license or contractual agreement. #include #include #include #include #include #include #include #include #include #ifndef DEB #define No_Standard_RangeError #define No_Standard_OutOfRange #endif #define SURFACE1 (*((Handle(Adaptor3d_HSurface) *)(surface1))) #define SURFACE2 (*((Handle(Adaptor3d_HSurface) *)(surface2))) #define CURVE (*((Handle(Adaptor2d_HCurve2d) *)(curve))) IntPatch_CSFunction::IntPatch_CSFunction(const Handle(Adaptor3d_HSurface)& S1, const Handle(Adaptor2d_HCurve2d)& C, const Handle(Adaptor3d_HSurface)& S2) { surface1 = (Standard_Address)(&S1); surface2 = (Standard_Address)(&S2); curve = (Standard_Address)(&C); f = 0.; } Standard_Integer IntPatch_CSFunction::NbVariables()const { return 3;} Standard_Integer IntPatch_CSFunction::NbEquations()const { return 3;} Standard_Boolean IntPatch_CSFunction::Value(const math_Vector& X, math_Vector& F){ gp_Pnt Psurf(Adaptor3d_HSurfaceTool::Value(SURFACE1,X(1),X(2))); gp_Pnt2d p2d(IntPatch_HCurve2dTool::Value(CURVE,X(3))); gp_Pnt Pcurv(Adaptor3d_HSurfaceTool::Value(SURFACE2,p2d.X(),p2d.Y())); F(1) = Psurf.X()-Pcurv.X(); F(2) = Psurf.Y()-Pcurv.Y(); F(3) = Psurf.Z()-Pcurv.Z(); f = F(1)*F(1)+ F(2)*F(2)+ F(3)*F(3); p = gp_Pnt((Psurf.XYZ()+Pcurv.XYZ())/2.); return Standard_True; } Standard_Boolean IntPatch_CSFunction::Derivatives ( const math_Vector& X, math_Matrix& D) { gp_Pnt Psurf,Pcurv; gp_Vec D1u,D1v,D1w; gp_Pnt2d p2d; gp_Vec2d d2d; gp_Vec d1u,d1v; Adaptor3d_HSurfaceTool::D1(SURFACE1,X(1),X(2),Psurf,D1u,D1v); IntPatch_HCurve2dTool::D1(CURVE,X(3),p2d,d2d); Adaptor3d_HSurfaceTool::D1(SURFACE2,p2d.X(),p2d.Y(),Pcurv,d1u,d1v); D1w.SetLinearForm(d2d.X(),d1u,d2d.Y(),d1v); D(1,1) = D1u.X(); D(1,2) = D1v.X(); D(1,3) = -D1w.X(); D(2,1) = D1u.Y(); D(2,2) = D1v.Y(); D(2,3) = -D1w.Y(); D(3,1) = D1u.Z(); D(3,2) = D1v.Z(); D(3,3) = -D1w.Z(); return Standard_True; } Standard_Boolean IntPatch_CSFunction::Values( const math_Vector& X, math_Vector& F, math_Matrix& D) { gp_Pnt Psurf,Pcurv; gp_Vec D1u,D1v,D1w; gp_Pnt2d p2d; gp_Vec2d d2d; gp_Vec d1u,d1v; Adaptor3d_HSurfaceTool::D1(SURFACE1,X(1),X(2),Psurf,D1u,D1v); IntPatch_HCurve2dTool::D1(CURVE,X(3),p2d,d2d); Adaptor3d_HSurfaceTool::D1(SURFACE2,p2d.X(),p2d.Y(),Pcurv,d1u,d1v); D1w.SetLinearForm(d2d.X(),d1u,d2d.Y(),d1v); D(1,1) = D1u.X(); D(1,2) = D1v.X(); D(1,3) = -D1w.X(); D(2,1) = D1u.Y(); D(2,2) = D1v.Y(); D(2,3) = -D1w.Y(); D(3,1) = D1u.Z(); D(3,2) = D1v.Z(); D(3,3) = -D1w.Z(); F(1) = Psurf.X()-Pcurv.X(); F(2) = Psurf.Y()-Pcurv.Y(); F(3) = Psurf.Z()-Pcurv.Z(); f = F(1)*F(1)+ F(2)*F(2)+ F(3)*F(3); p = gp_Pnt((Psurf.XYZ()+Pcurv.XYZ())/2.); return Standard_True; } const gp_Pnt& IntPatch_CSFunction::Point() const { return p;} Standard_Real IntPatch_CSFunction::Root() const { return f;} const Handle(Adaptor3d_HSurface)& IntPatch_CSFunction::AuxillarSurface() const { return SURFACE1;} const Handle(Adaptor2d_HCurve2d)& IntPatch_CSFunction::AuxillarCurve() const { return CURVE;} #undef SURFACE1 #undef SURFACE2 #undef CURVE