// Copyright (c) 2020 OPEN CASCADE SAS // // This file is part of the examples of the Open CASCADE Technology software library. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE #include "GeometrySamples.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "AdaptorPnt2d_AIS.h" #include "AdaptorVec_AIS.h" #include "AdaptorCurve_AIS.h" #include "AdaptorCurve2d_AIS.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include void GeometrySamples::ExecuteSample (const TCollection_AsciiString& theSampleName) { Standard_Boolean anIsSamplePresent = Standard_True; FindSourceCode(theSampleName); if (theSampleName == "ZeroDimensionObjects3dSample") ZeroDimensionObjects3dSample(); else if (theSampleName == "Vectors3dSample") Vectors3dSample(); else if (theSampleName == "InfinityLines3dSample") InfinityLines3dSample(); else if (theSampleName == "SecondOrderCurves3dSample") SecondOrderCurves3dSample(); else if (theSampleName == "PlaneSurfaces3dSample") PlaneSurfaces3dSample(); else if (theSampleName == "SecondOrderSurfaces3dSample") SecondOrderSurfaces3dSample(); else if (theSampleName == "ZeroDimensionObjects2dSample") ZeroDimensionObjects2dSample(); else if (theSampleName == "Vectors2dSample") Vectors2dSample(); else if (theSampleName == "InfinityLines2dSample") InfinityLines2dSample(); else if (theSampleName == "SecondOrderCurves2dSample") SecondOrderCurves2dSample(); else if (theSampleName == "BarycenterPoint3dSample") BarycenterPoint3dSample(); else if (theSampleName == "RotatedVector3dSample") RotatedVector3dSample(); else if (theSampleName == "MirroredLine3dSample") MirroredLine3dSample(); else if (theSampleName == "ScaledEllipse3dSample") ScaledEllipse3dSample(); else if (theSampleName == "TransformedCylinder3dSample") TransformedCylinder3dSample(); else if (theSampleName == "TranslatedTorus3dSample") TranslatedTorus3dSample(); else if (theSampleName == "ConjugateObjects3dSample") ConjugateObjects3dSample(); else if (theSampleName == "ProjectionOfPoint3dSample") ProjectionOfPoint3dSample(); else if (theSampleName == "MinimalDistance3dSample") MinimalDistance3dSample(); else if (theSampleName == "MirroredAxis2dSample") MirroredAxis2dSample(); else if (theSampleName == "TransformedEllipse2dSample") TransformedEllipse2dSample(); else if (theSampleName == "ConjugateObjects2dSample") ConjugateObjects2dSample(); else if (theSampleName == "Intersection3dSample") Intersection3dSample(); else if (theSampleName == "TranslatedPoint2dSample") TranslatedPoint2dSample(); else if (theSampleName == "RotatedDirection2dSample") RotatedDirection2dSample(); else if (theSampleName == "Tangent2dSample") Tangent2dSample(); else if (theSampleName == "ProjectionOfPoint2dSample") ProjectionOfPoint2dSample(); else if (theSampleName == "MinimalDistance2dSample") MinimalDistance2dSample(); else if (theSampleName == "Intersection2dSample") Intersection2dSample(); else if (theSampleName == "PointInfo3dSample") PointInfo3dSample(); else if (theSampleName == "EllipseInfo3dSample") EllipseInfo3dSample(); else if (theSampleName == "PointInfo2dSample") PointInfo2dSample(); else if (theSampleName == "CircleInfo2dSample") CircleInfo2dSample(); else if (theSampleName == "SecondOrderCurves3dSample") SecondOrderCurves3dSample(); else if (theSampleName == "FreeStyleCurves3dSample") FreeStyleCurves3dSample(); else if (theSampleName == "AnalyticalSurfaces3dSample") AnalyticalSurfaces3dSample(); else if (theSampleName == "FreeStyleSurfaces3dSample") FreeStyleSurfaces3dSample(); else if (theSampleName == "SecondOrderCurves2dSample") SecondOrderCurves2dSample(); else if (theSampleName == "FreeStyleCurves2dSample") FreeStyleCurves2dSample(); else if (theSampleName == "TrimmedCurve3dSample") TrimmedCurve3dSample(); else if (theSampleName == "OffsetCurve3dSample") OffsetCurve3dSample(); else if (theSampleName == "BSplineFromCircle3dSample") BSplineFromCircle3dSample(); else if (theSampleName == "TrimmedSurface3dSample") TrimmedSurface3dSample(); else if (theSampleName == "OffsetSurface3dSample") OffsetSurface3dSample(); else if (theSampleName == "ExtrusionSurface3dSample") ExtrusionSurface3dSample(); else if (theSampleName == "RevolutionSurface3dSample") RevolutionSurface3dSample(); else if (theSampleName == "TrimmedCurve2dSample") TrimmedCurve2dSample(); else if (theSampleName == "OffsetCurve2dSample") OffsetCurve2dSample(); else if (theSampleName == "BoundingBoxOfSurface3dSample") BoundingBoxOfSurface3dSample(); else if (theSampleName == "BoundingBoxOfCurves3dSample") BoundingBoxOfCurves3dSample(); else if (theSampleName == "BoundingBoxOfCurves2dSample") BoundingBoxOfCurves2dSample(); else if (theSampleName == "DumpCircleInfoSample") DumpCircleInfoSample(); else if (theSampleName == "DumpBSplineCurveInfoSample") DumpBSplineCurveInfoSample(); else { myResult << "No function found: " << theSampleName; myCode += TCollection_AsciiString("No function found: ") + theSampleName; anIsSamplePresent = Standard_False; } myIsProcessed = anIsSamplePresent; } void GeometrySamples::DisplayPnt (const gp_Pnt2d& thePnt2d, const TCollection_AsciiString& theText, Aspect_TypeOfMarker theMarker, Standard_Real theDistance) { gp_Pnt aPnt(thePnt2d.X(), thePnt2d.Y(), 0.0); Handle(Geom_CartesianPoint) aGeomPoint = new Geom_CartesianPoint(aPnt); Handle(AIS_Point) anAisPoint = new AIS_Point(aGeomPoint); anAisPoint->SetMarker(theMarker); myObject2d.Append(anAisPoint); Handle(AIS_TextLabel) aPntLabel = new AIS_TextLabel(); aPntLabel->SetText(theText); aPntLabel->SetPosition(gp_Pnt(aPnt.X(), aPnt.Y() + theDistance, aPnt.Z())); myObject2d.Append(aPntLabel); } void GeometrySamples::DisplayPnt (const gp_Pnt& thePnt, const TCollection_AsciiString& theText, Aspect_TypeOfMarker theMarker, Standard_Real theDistance) { Handle(Geom_CartesianPoint) aPoint = new Geom_CartesianPoint(thePnt); Handle(AIS_Point) anAisPoint = new AIS_Point(aPoint); anAisPoint->SetMarker(theMarker); myObject3d.Append(anAisPoint); Handle(AIS_TextLabel) aPntLabel = new AIS_TextLabel(); aPntLabel->SetText(theText); aPntLabel->SetPosition(gp_Pnt(thePnt.X(), thePnt.Y(), thePnt.Z() + theDistance)); myObject3d.Append(aPntLabel); } void GeometrySamples::ZeroDimensionObjects3dSample() { // gp_Pnt describes a point in 3D space. A Geom_CartesianPoint is defined by // a gp_Pnt point, with its three Cartesian coordinates X, Y and Z. gp_Pnt aCoordPnt(10.0, 20.0, 30.0); Handle(Geom_CartesianPoint) aCoordGeomPoint = new Geom_CartesianPoint(aCoordPnt); Handle(AIS_Point) aCoordAisPoint = new AIS_Point(aCoordGeomPoint); myObject3d.Append(aCoordAisPoint); Handle(AIS_TextLabel) aPntLabel = new AIS_TextLabel(); aPntLabel->SetText(" gp_Pnt"); aPntLabel->SetPosition(gp_Pnt(aCoordPnt.X(), aCoordPnt.Y(), aCoordPnt.Z() + 5.0)); myObject3d.Append(aPntLabel); myResult << "gp_Pnt was created" << std::endl; // gp_XYZ class describes a Cartesian coordinate entity in 3D space (X,Y,Z). // This entity is used for algebraic calculation. // This entity can be transformed with a "Trsf" or a "GTrsf" from package "gp". // It is used in vectorial computations or for holding this type of information // in data structures. gp_XYZ aXyz1(10.0, 20.0, 30.0); gp_XYZ aXyz2(20.0, 10.0, 30.0); gp_XYZ aXyzSum = aXyz1 + aXyz2; gp_Pnt aSumPnt(aXyzSum); Handle(Geom_CartesianPoint) aXyzGeomPoint = new Geom_CartesianPoint(aSumPnt); Handle(AIS_Point) aSumAisPoint = new AIS_Point(aXyzGeomPoint); myObject3d.Append(aSumAisPoint); Handle(AIS_TextLabel) aXyzLabel = new AIS_TextLabel(); aXyzLabel->SetText(" gp_XYZ"); aXyzLabel->SetPosition(gp_Pnt(aXyzSum.X(), aXyzSum.Y(), aXyzSum.Z() + 5.0)); myObject3d.Append(aXyzLabel); myResult << "gp_XYZ was created" << std::endl; } void GeometrySamples::Vectors3dSample() { gp_Pnt aPnt1(0.0, 0.0, 0.0); gp_Pnt aPnt2(5.0, 0.0, 0.0); // gp_Vec defines a non-persistent vector in 3D space. gp_Vec aVec(aPnt1, aPnt2); Handle(AdaptorVec_AIS) aVecAIS = new AdaptorVec_AIS(aPnt1, aVec, 0.5); aVecAIS->SetText(" gp_Vec"); myObject3d.Append(aVecAIS); myResult << "gp_Vec magnitude: " << aVec.Magnitude() << std::endl; // Describes a unit vector in 3D space. // This unit vector is also called "Direction". // See Also gce_MakeDir which provides functions for more complex unit vector // constructions Geom_Direction which provides additional functions // for constructing unit vectors and works, in particular, // with the parametric equations of unit vectors. gp_Dir aDir(aVec); Handle(AdaptorVec_AIS) aDirAIS = new AdaptorVec_AIS(gp_Pnt(0.0, 0.0, 10.0), aDir, 1.0, 0.5); aDirAIS->SetText(" gp_Dir"); myObject3d.Append(aDirAIS); myResult << "gp_Dir coordinates: X: " << aDir.X() << ", Y: " << aDir.Y() << ", Z: " << aDir.Z() << std::endl; } void GeometrySamples::InfinityLines3dSample() { gp_Pnt aBasePoint(0.0, 0.0, 0.0); gp_Dir aX_Direction(1.0, 0.0, 0.0); gp_Dir anY_Direction(0.0, 1.0, 0.0); gp_Dir aZ_Direction(0.0, 0.0, 1.0); // Describes an axis in 3D space. gp_Ax1 anAxis1(aBasePoint, aZ_Direction); Handle(AdaptorVec_AIS) anAx1Ais = new AdaptorVec_AIS(anAxis1.Location(), anAxis1.Direction(), 1.0, 0.3); anAx1Ais->SetText(" gp_Ax1"); myObject3d.Append(anAx1Ais); myResult << "gp_Ax1 was created" << std::endl << std::endl; // Describes a right - handed coordinate system in 3D space. aBasePoint.SetCoord(0.0, 0.0, 3.0); gp_Ax2 anAxis2(aBasePoint, aZ_Direction); Handle(AdaptorVec_AIS) aAx2AisZ = new AdaptorVec_AIS(anAxis2.Location(), anAxis2.Direction(), 1.0, 0.3); aAx2AisZ->SetText(" gp_Ax2 Z"); myObject3d.Append(aAx2AisZ); Handle(AdaptorVec_AIS) aAx2AisX = new AdaptorVec_AIS(anAxis2.Location(), anAxis2.XDirection(), 1.0, 0.3); aAx2AisX->SetText(" gp_Ax2 X"); myObject3d.Append(aAx2AisX); Handle(AdaptorVec_AIS) aAx2AisY = new AdaptorVec_AIS(anAxis2.Location(), anAxis2.YDirection(), 1.0, 0.3); aAx2AisY->SetText(" gp_Ax2 Y"); myObject3d.Append(aAx2AisY); myResult << "gp_Ax2 was created" << std::endl; // Describes a coordinate system in 3D space.Unlike a gp_Ax2 coordinate system, // a gp_Ax3 can be right - handed("direct sense") or left - handed("indirect sense"). gp_Ax3 anAxis3(gp_XYZ(0.0, 0.0, 6.0), aZ_Direction, aX_Direction); anAxis3.YReverse(); Handle(AdaptorVec_AIS) anAx3AisZ = new AdaptorVec_AIS(anAxis3.Location(), anAxis3.Direction(), 1.0, 0.3); anAx3AisZ->SetText(" gp_Ax3 Z"); myObject3d.Append(anAx3AisZ); Handle(AdaptorVec_AIS) anAx3AisX = new AdaptorVec_AIS(anAxis3.Location(), anAxis3.XDirection(), 1.0, 0.3); anAx3AisX->SetText(" gp_Ax3 X"); myObject3d.Append(anAx3AisX); Handle(AdaptorVec_AIS) anAx3AisY = new AdaptorVec_AIS(anAxis3.Location(), anAxis3.YDirection(), 1.0, 0.3); anAx3AisY->SetText(" gp_Ax3 Y"); myObject3d.Append(anAx3AisY); myResult << "gp_Ax3 was created" << std::endl; const gp_Dir& anAxis3_xDir = anAxis3.XDirection(); const gp_Dir& anAxis3_yDir = anAxis3.YDirection(); myResult << "gp_Ax3 X direction: " << anAxis3_xDir.X() << " " << anAxis3_xDir.Y() << " " << anAxis3_xDir.Z() << std::endl; myResult << "gp_Ax3 Y direction: " << anAxis3_yDir.X() << " " << anAxis3_yDir.Y() << " " << anAxis3_yDir.Z() << std::endl; TCollection_AsciiString aDirectionDescription; if (anAxis3.Direct()) { aDirectionDescription = "anAxis3 is a right-handed axis system"; } else { aDirectionDescription = "anAxis3 is a left-handed axis system"; } myResult << aDirectionDescription << std::endl << std::endl; // Describes a line in 3D space. A line is positioned in space with an axis // (a gp_Ax1 object) which gives it an origin and a unit vector. gp_Lin aLine(gp_Pnt(5.0, 0.0, 0.0), gp_Dir(0.0, 1.0, 0.0)); Handle(AdaptorVec_AIS) anLineAis = new AdaptorVec_AIS(aLine.Location(), aLine.Direction(), 8.0); anLineAis->SetText(" gp_Lin"); myObject3d.Append(anLineAis); myResult << "gp_Lin was created" << std::endl << std::endl; } void GeometrySamples::SecondOrderCurves3dSample() { gp_Ax2 anAxis2(gp_Pnt(0.0, 0.0, 0.0), gp_Dir(0.0, 0.0, 1.0)); gp_Circ aCirc(anAxis2, 10.0); Handle(Geom_Circle) aGeomCircle = new Geom_Circle(aCirc); Handle(AIS_Circle) anAisCircle = new AIS_Circle(aGeomCircle); myObject3d.Append(anAisCircle); // Describes an ellipse in 3D space. An ellipse is defined by its major and minor // radii and positioned in space with a coordinate system (a gp_Ax2 object) gp_Elips anElips(anAxis2.Translated(gp_Vec(0.0, 0.0, 10.0)), 20.0, 10.0); Handle(Geom_Ellipse) aGeomEllipse = new Geom_Ellipse(anElips); Handle(AdaptorCurve_AIS) anAisEllipce = new AdaptorCurve_AIS(aGeomEllipse); myObject3d.Append(anAisEllipce); // Describes a parabola in 3D space. A parabola is defined by its focal length // (that is, the distance between its focus and apex) and positioned in space with // a coordinate system (a gp_Ax2 object) gp_Parab aParab(anAxis2.Translated(gp_Vec(0.0, 0.0, 20.0)), 2.0); Handle(Geom_Parabola) aGeomParabola = new Geom_Parabola(aParab); Handle(Geom_TrimmedCurve) aTrimmedParabola = new Geom_TrimmedCurve(aGeomParabola, 20.0, -20.0); Handle(AdaptorCurve_AIS) anAisParabola = new AdaptorCurve_AIS(aTrimmedParabola); myObject3d.Append(anAisParabola); // Describes a branch of a hyperbola in 3D space. A hyperbola is defined by its major // and minor radii and positioned in space with a coordinate system (a gp_Ax2 object) gp_Hypr aHypr(anAxis2.Translated(gp_Vec(0.0, 0.0, 30.0)), 20.0, 10.0); Handle(Geom_Hyperbola) aGeomHyperbola = new Geom_Hyperbola(aHypr); Handle(Geom_TrimmedCurve) aTrimmedHyperbola = new Geom_TrimmedCurve(aGeomHyperbola, 2.0, -2.0); Handle(AdaptorCurve_AIS) anAisHyperbola = new AdaptorCurve_AIS(aTrimmedHyperbola); myObject3d.Append(anAisHyperbola); } void GeometrySamples::PlaneSurfaces3dSample() { // Describes a plane.A plane is positioned in space with a coordinate system(a gp_Ax3 object), // such that the plane is defined by the origin, "X Direction" and "Y Direction" of this // coordinate system, which is the "local coordinate system" of the plane.The "main Direction" // of the coordinate system is a vector normal to the plane. gp_Pln aPln(gp_Pnt(0.0, 0.0, 0.0), gp_Dir(0.0, 0.0, 1.0)); Handle(Geom_Plane) aPlane = new Geom_Plane(aPln); Handle(AIS_Plane) anAisPlane = new AIS_Plane(aPlane, aPln.Location(), gp_Pnt(10.0, 10.0, 0.0), gp_Pnt(-10.0, -10.0, 0.0), Standard_False); myObject3d.Append(anAisPlane); // Describes an infinite cylindrical surface.A cylinder is defined by its radius and positioned // in space with a coordinate system(a gp_Ax3 object), the "main Axis" of which is the axis of // the cylinder.This coordinate system is the "local coordinate system" of the cylinder. gp_Cylinder aCylinder(gp_Ax3(gp_Pnt(0.0, 0.0, 10.0), gp_Dir(0.0, 0.0, 1.0)), 10.0); Handle(Geom_CylindricalSurface) aCylindricalSurface = new Geom_CylindricalSurface(aCylinder); Handle(AIS_Shape) anAisCylinder = new AIS_Shape(BRepBuilderAPI_MakeFace( aCylindricalSurface, 0.0, 2.0*M_PI, 0.0, 10.0, Precision::Confusion()).Shape()); myObject3d.Append(anAisCylinder); // Defines an infinite conical surface. A cone is defined by its half-angle (can be negative) at // the apex and positioned in space with a coordinate system (a gp_Ax3 object) and a "reference radius" gp_Cone aCone(gp_Ax3(gp_Pnt(0.0, 0.0, 30.0), gp_Dir(0.0, 0.0, 1.0)), 0.25*M_PI, 0.0); Handle(Geom_ConicalSurface) aConicalSurface = new Geom_ConicalSurface(aCone); Handle(AIS_Shape) anAisCone = new AIS_Shape(BRepBuilderAPI_MakeFace( aConicalSurface, 0.0, 2.0*M_PI, 0.0, 20.0, Precision::Confusion()).Shape()); myObject3d.Append(anAisCone); } void GeometrySamples::SecondOrderSurfaces3dSample() { gp_Sphere aSphere(gp_Ax3(gp_Pnt(0.0, 0.0, 0.0), gp_Dir(0.0, 0.0, 1.0)), 10.0); Handle(Geom_SphericalSurface) aSphericalSurface = new Geom_SphericalSurface(aSphere); Handle(AIS_Shape) anAisSphere = new AIS_Shape(BRepBuilderAPI_MakeFace( aSphericalSurface, 0.0, 2.0*M_PI, 0.0, 2.0*M_PI, Precision::Confusion()).Shape()); myObject3d.Append(anAisSphere); gp_Torus aTorus(gp_Ax3(gp_Pnt(0.0, 0.0, 20.0), gp_Dir(0.0, 0.0, 1.0)), 40.0, 10.0); Handle(Geom_ToroidalSurface) aToroidalSurface = new Geom_ToroidalSurface(aTorus); Handle(AIS_Shape) anAisTorus = new AIS_Shape(BRepBuilderAPI_MakeFace( aToroidalSurface, 0.0, 2.0*M_PI, 0.0, 2.0*M_PI, Precision::Confusion()).Shape()); myObject3d.Append(anAisTorus); } void GeometrySamples::ZeroDimensionObjects2dSample() { // Defines a non-persistent 2D Cartesian point. gp_Pnt2d aCoordPnt(10.0, 20.0); Handle(Geom2d_CartesianPoint) aCoordGeomPoint = new Geom2d_CartesianPoint(aCoordPnt); Handle(AdaptorPnt2d_AIS) aCoordAisPoint = new AdaptorPnt2d_AIS(aCoordGeomPoint); myObject2d.Append(aCoordAisPoint); Handle(AIS_TextLabel) aPntLabel = new AIS_TextLabel(); aPntLabel->SetText("gp_Pnt2d"); aPntLabel->SetPosition(gp_Pnt(aCoordPnt.X(), aCoordPnt.Y() + 0.5, 0.0)); myObject2d.Append(aPntLabel); myResult << "gp_Pnt was created" << std::endl; // This class describes a Cartesian coordinate entity in 2D space{ X,Y }. // This class is non persistent.This entity used for algebraic calculation. // An XY can be transformed with a Trsf2d or a GTrsf2d from package gp. // It is used in vectorial computations or for holding this type of information in data structures. gp_XY aXy(20.0, 10.0); Handle(Geom2d_CartesianPoint) aXyGeomPoint = new Geom2d_CartesianPoint(aXy); Handle(AdaptorPnt2d_AIS) aXyAisPoint = new AdaptorPnt2d_AIS(aXyGeomPoint); myObject2d.Append(aXyAisPoint); Handle(AIS_TextLabel) aXyLabel = new AIS_TextLabel(); aXyLabel->SetText(" gp_XY"); aXyLabel->SetPosition(gp_Pnt(aXy.X(), aXy.Y() + 0.5, 0.0)); myObject2d.Append(aXyLabel); myResult << "gp_XY was created" << std::endl; } void GeometrySamples::Vectors2dSample() { // Describes a unit vector in the plane (2D space). // This unit vector is also called "Direction". gp_Dir2d aDir(3.0, 4.0); Handle(AdaptorVec_AIS) anAisDir = new AdaptorVec_AIS(gp_Pnt2d(0.0, 0.0), aDir, 1.0, 0.3); anAisDir->SetText(" gp_Dir2d"); myObject2d.Append(anAisDir); myResult << "gp_Dir2d coordinates: X: " << aDir.X() << ", Y: " << aDir.Y() << std::endl; // Defines a non-persistent vector in 2D space. gp_Vec2d aVec(aDir); aVec = aVec * 2; Handle(AdaptorVec_AIS) anAisVec = new AdaptorVec_AIS(gp_Pnt2d(0.0, 5.0), aVec, 0.3); anAisVec->SetText(" gp_Vec2d"); myObject2d.Append(anAisVec); myResult << "gp_Vec2d magnitude: " << aVec.Magnitude() << std::endl; } void GeometrySamples::InfinityLines2dSample() { // Describes an axis in the plane (2D space) gp_Ax2d anAx2d(gp_Pnt2d(0.0, 0.0), gp_Dir2d(1.0, 0.0)); Handle(AdaptorVec_AIS) anAisAx2d = new AdaptorVec_AIS(anAx2d.Location(), anAx2d.Direction(), 1.0, 0.3); anAisAx2d->SetText(" gp_Ax2d"); myObject2d.Append(anAisAx2d); // Describes a coordinate system in a plane (2D space). gp_Ax22d anAx22d(gp_Pnt2d(0.0, 2.0), gp_Dir2d(1.0, 1.0), Standard_False); Handle(AdaptorVec_AIS) anAisAx2d_X = new AdaptorVec_AIS(anAx22d.Location(), anAx22d.XDirection(), 1.0, 0.3); anAisAx2d_X->SetText(" gp_Ax2d X"); myObject2d.Append(anAisAx2d_X); Handle(AdaptorVec_AIS) anAisAx2d_Y = new AdaptorVec_AIS(anAx22d.Location(), anAx22d.YDirection(), 1.0, 0.3); anAisAx2d_Y->SetText(" gp_Ax2d Y"); myObject2d.Append(anAisAx2d_Y); // Describes a line in 2D space. A line is positioned in the plane with an axis (a gp_Ax2d object) which gives // the line its origin and unit vector. A line and an axis are similar objects, thus, // we can convert one into the other. A line provides direct access to the majority of the edit and query // functions available on its positioning axis. gp_Lin2d aLin2d(gp_Pnt2d(2.0, 4.0), gp_Dir2d(0.0, -1.0)); Handle(AdaptorVec_AIS) anAisLin = new AdaptorVec_AIS(aLin2d.Location(), aLin2d.Direction(), 1.0, 0.3); anAisLin->SetText(" gp_Lin2d"); myObject2d.Append(anAisLin); } void GeometrySamples::SecondOrderCurves2dSample() { // Describes a circle in the plane (2D space). A circle is defined by its radius // and positioned in the plane with a coordinate system (a gp_Ax22d object) gp_Circ2d aCirc2d; aCirc2d.SetLocation(gp_Pnt2d(0.0, 0.0)); aCirc2d.SetRadius(10.0); Handle(Geom2d_Circle) aGeomCircle = new Geom2d_Circle(aCirc2d); Handle(AdaptorCurve2d_AIS) anAisCirc = new AdaptorCurve2d_AIS(aGeomCircle, Aspect_TOL_SOLID); myObject2d.Append(anAisCirc); // Describes an ellipse in the plane (2D space). An ellipse is defined by its major // and minor radii and positioned in the plane with a coordinate system (a gp_Ax22d object) gp_Elips2d anElips(gp_Ax2d(gp_Pnt2d(0.0, 30.0), gp_Dir2d(1.0, 0.0)), 20.0, 10.0); Handle(Geom2d_Ellipse) aGeomEllipse = new Geom2d_Ellipse(anElips); Handle(AdaptorCurve2d_AIS) anAisEllipse = new AdaptorCurve2d_AIS(aGeomEllipse, Aspect_TOL_DASH); myObject2d.Append(anAisEllipse); // Describes a parabola in the plane (2D space). A parabola is defined by its focal length // (that is, the distance between its focus and apex) and positioned in the plane with // a coordinate system (a gp_Ax22d object) gp_Parab2d aParab2d(gp_Ax2d(gp_Pnt2d(20.0, 0.0), gp_Dir2d(1.0, 0.0)), 10.0); Handle(Geom2d_Parabola) aGeomParabola = new Geom2d_Parabola(aParab2d); Handle(Geom2d_TrimmedCurve) aTrimmedParabola = new Geom2d_TrimmedCurve(aGeomParabola, 40.0, -40.0); Handle(AdaptorCurve2d_AIS) anAisParabola = new AdaptorCurve2d_AIS(aTrimmedParabola, Aspect_TOL_DOT); myObject2d.Append(anAisParabola); // Describes a branch of a hyperbola in the plane (2D space). A hyperbola is defined by its major and // minor radii, and positioned in the plane with a coordinate system (a gp_Ax22d object) gp_Hypr2d aHypr2d(gp_Ax2d(gp_Pnt2d(20.0, 0.0), gp_Dir2d(1.0, 0.0)), 20.0, 10.0); Handle(Geom2d_Hyperbola) aGeomHyperbola = new Geom2d_Hyperbola(aHypr2d); Handle(Geom2d_TrimmedCurve) aTrimmedHyperbola = new Geom2d_TrimmedCurve(aGeomHyperbola, 2.0, -2.0); Handle(AdaptorCurve2d_AIS) anAisHyperbola = new AdaptorCurve2d_AIS(aTrimmedHyperbola, Aspect_TOL_DOTDASH); myObject2d.Append(anAisHyperbola); } void GeometrySamples::BarycenterPoint3dSample() { // Barycenter of 2 points gp_Pnt aPnt1(11, 2, 3); gp_Pnt aPnt2(13, 4, 5); gp_Pnt aBarycenterPnt2 = aPnt1; Standard_Real anAlpha = 3; Standard_Real anBeta = 7; // Assigns the result of the following expression to this point: // (Alpha*this + Beta*P) / (Alpha + Beta) aBarycenterPnt2.BaryCenter(anAlpha, aPnt2, anBeta); DisplayPnt(aPnt1, "Pnt1", Aspect_TOM_PLUS, 0.5); DisplayPnt(aPnt2, "Pnt2", Aspect_TOM_PLUS, 0.5); DisplayPnt(aBarycenterPnt2, "Barycenter Pnt", Aspect_TOM_O_PLUS, 0.5); // BaryCenter of an array of point gp_Pnt aP1(0, 0, 5); gp_Pnt aP2(1, 2, 3); gp_Pnt aP3(2, 3, -2); gp_Pnt aP4(4, 3, 5); gp_Pnt aP5(5, 5, 4); TColgp_Array1OfPnt aPntArray(1, 5); aPntArray.SetValue(1, aP1); aPntArray.SetValue(2, aP2); aPntArray.SetValue(3, aP3); aPntArray.SetValue(4, aP4); aPntArray.SetValue(5, aP5); Standard_Real Tolerance = 8; GProp_PEquation aPEquation(aPntArray, Tolerance); gp_Pnt aBarycenterPnt5; // P declaration bool isPoint = false; if (aPEquation.IsPoint()) { isPoint = true; aBarycenterPnt5 = aPEquation.Point(); myResult << "GProp_PEquation is a point" << std::endl; } else { isPoint = false; myResult << "GProp_PEquation is not a point" << std::endl; } if (aPEquation.IsLinear()) { /*... */ } if (aPEquation.IsPlanar()) { /*... */ } if (aPEquation.IsSpace()) { /*... */ } const TCollection_AsciiString aPointName("P"); for (Standard_Integer i = aPntArray.Lower(); i <= aPntArray.Upper(); i++) { TCollection_AsciiString aString(i); aString = aPointName + aString; DisplayPnt(aPntArray(i), aString, Aspect_TOM_STAR, 0.5); } DisplayPnt(aBarycenterPnt5, "Barycenter of 5 points", Aspect_TOM_O_STAR, 0.5); myResult << " IsPoint = "; if (isPoint) { myResult << "True --> " << " P ( " << aBarycenterPnt5.X() << aBarycenterPnt5.Y() << aBarycenterPnt5.Z() << " );" << std::endl; } else { myResult << "False"; } myResult << std::endl << " IsLinear = " << (aPEquation.IsLinear() ? "True" : "False"); myResult << std::endl << " IsPlanar = " << (aPEquation.IsPlanar() ? "True" : "False"); myResult << std::endl << " IsSpace = " << (aPEquation.IsSpace() ? "True" : "False"); } void GeometrySamples::RotatedVector3dSample() { gp_Vec aBaseVec(0.0, 0.0, 10.0); gp_Pnt aZeroPnt(0.0, 0.0, 0.0); gp_Vec aRotatedVec = aBaseVec.Rotated(gp_Ax1(aZeroPnt, gp_Dir(1.0, 0.0, 0.0)), M_PI_4); Handle(AdaptorVec_AIS) aBaseVecAIS = new AdaptorVec_AIS(aZeroPnt, aBaseVec); aBaseVecAIS->SetText(" Base vector"); myObject3d.Append(aBaseVecAIS); Handle(AdaptorVec_AIS) aRotatedVecAIS = new AdaptorVec_AIS(aZeroPnt, aRotatedVec); aRotatedVecAIS->SetText(" Rotated vector"); myObject3d.Append(aRotatedVecAIS); Standard_Real anAdgle = aBaseVec.Angle(aRotatedVec)*180.0 / M_PI; myResult << "An angle between vectors = " << anAdgle << std::endl; } void GeometrySamples::MirroredLine3dSample() { gp_Lin aBaseLin(gp_Pnt(0.0, 0.0, 0.0), gp_Dir(1.0, 1.0, 1.0)); gp_Ax2 aXyzAxis; gp_Lin aMirroredLin = aBaseLin.Mirrored(aXyzAxis); Handle(AdaptorVec_AIS) aBaseLineAis = new AdaptorVec_AIS(aBaseLin.Location(), aBaseLin.Direction(), 8.0); aBaseLineAis->SetText(" Base Line"); myObject3d.Append(aBaseLineAis); Handle(AdaptorVec_AIS) aMirroredLineAis = new AdaptorVec_AIS(aMirroredLin.Location(), aMirroredLin.Direction(), 8.0); aMirroredLineAis->SetText(" Mirrored Line"); myObject3d.Append(aMirroredLineAis); Handle(AIS_Plane) anAisPlane = new AIS_Plane (new Geom_Plane(gp_Ax3(aXyzAxis)), aXyzAxis.Location(), gp_Pnt(10.0, 10.0, 0.0), gp_Pnt(-10.0, -10.0, 0.0), Standard_False); myObject3d.Append(anAisPlane); Standard_Real anAdgle = aBaseLin.Angle(aMirroredLin)*180.0 / M_PI; myResult << "An angle between lines = " << anAdgle << std::endl; } void GeometrySamples::ScaledEllipse3dSample() { gp_Ax2 anAxis2(gp_Pnt(), gp_Dir(0.0, 0.0, 1.0)); gp_Elips anBaseElips(anAxis2, 20.0, 10.0); gp_Elips anScaledElips = anBaseElips.Scaled(gp_Pnt(), 2.5); Handle(Geom_Ellipse) aBaseGeomEllipse = new Geom_Ellipse(anBaseElips); Handle(AdaptorCurve_AIS) anAisBaseEllipce = new AdaptorCurve_AIS(aBaseGeomEllipse); myObject3d.Append(anAisBaseEllipce); Handle(Geom_Ellipse) aScaledGeomEllipse = new Geom_Ellipse(anScaledElips); Handle(AdaptorCurve_AIS) anAisScaledEllipce = new AdaptorCurve_AIS(aScaledGeomEllipse); myObject3d.Append(anAisScaledEllipce); } void GeometrySamples::TransformedCylinder3dSample() { gp_Cylinder aBaseCylinder(gp_Ax3(), 10.0); gp_Trsf aRotTrsf; aRotTrsf.SetRotation(gp_Ax1(gp_Pnt(), gp_Dir(1.0, 0.0, 0.0)), M_PI_2); gp_Trsf aScaleTrsf; aScaleTrsf.SetScale(gp_Pnt(), 1.5); gp_Trsf aTranslTrsf; aTranslTrsf.SetTranslation(gp_Vec(30.0, 0.0, 0.0)); gp_Trsf aComplexTrsf = aRotTrsf * aScaleTrsf * aTranslTrsf; gp_Cylinder aTransfCylinder = aBaseCylinder.Transformed(aComplexTrsf); Handle(Geom_CylindricalSurface) aBaseCylinderSurface = new Geom_CylindricalSurface(aBaseCylinder); Handle(AIS_Shape) anAisBaseCylinder = new AIS_Shape(BRepBuilderAPI_MakeFace( aBaseCylinderSurface, 0.0, 2.0*M_PI, 0.0, 2.0*M_PI, Precision::Confusion()).Shape()); myObject3d.Append(anAisBaseCylinder); Handle(Geom_CylindricalSurface) aTransfCylinderSurface = new Geom_CylindricalSurface(aTransfCylinder); Handle(AIS_Shape) anAisTransfCylinder = new AIS_Shape(BRepBuilderAPI_MakeFace( aTransfCylinderSurface, 0.0, 2.0*M_PI, 0.0, 2.0*M_PI, Precision::Confusion()).Shape()); myObject3d.Append(anAisTransfCylinder); } void GeometrySamples::TranslatedTorus3dSample() { gp_Torus aBaseTorus(gp_Ax3(gp_Pnt(), gp_Dir(0.0, 0.0, 1.0)), 40.0, 10.0); gp_Torus aTranslatedTorus = aBaseTorus.Translated(gp_Vec(70.0, 70.0, 70.0)); Handle(Geom_ToroidalSurface) aBaseSurface = new Geom_ToroidalSurface(aBaseTorus); Handle(AIS_Shape) anAisBaseShape = new AIS_Shape(BRepBuilderAPI_MakeFace( aBaseSurface, 0.0, 2.0*M_PI, 0.0, 2.0*M_PI, Precision::Confusion()).Shape()); myObject3d.Append(anAisBaseShape); Handle(Geom_ToroidalSurface) aTranslSurface = new Geom_ToroidalSurface(aTranslatedTorus); Handle(AIS_Shape) anAisTranslShape = new AIS_Shape(BRepBuilderAPI_MakeFace( aTranslSurface, 0.0, 2.0*M_PI, 0.0, 2.0*M_PI, Precision::Confusion()).Shape()); myObject3d.Append(anAisTranslShape); } void GeometrySamples::ConjugateObjects3dSample() { gp_Hypr aHypr(gp_Ax2(), 20.0, 10.0); gp_Ax1 anAsymptote1 = aHypr.Asymptote1(); gp_Ax1 anAsymptote2 = aHypr.Asymptote2(); gp_Ax1 aDirectrix1 = aHypr.Directrix1(); gp_Ax1 aDirectrix2 = aHypr.Directrix2(); gp_Pnt aFocus1 = aHypr.Focus1(); gp_Pnt aFocus2 = aHypr.Focus2(); gp_Pnt aLocation = aHypr.Location(); Handle(AdaptorVec_AIS) anAsy1AIS = new AdaptorVec_AIS(anAsymptote1.Location(), gp_Vec(anAsymptote1.Direction())*10.0); anAsy1AIS->SetText(" Asymptote 1"); myObject3d.Append(anAsy1AIS); Handle(AdaptorVec_AIS) anAsy2AIS = new AdaptorVec_AIS(anAsymptote2.Location(), gp_Vec(anAsymptote2.Direction())*10.0); anAsy2AIS->SetText(" Asymptote 2"); myObject3d.Append(anAsy2AIS); Handle(AdaptorVec_AIS) anDir1AIS = new AdaptorVec_AIS(aDirectrix1.Location(), gp_Vec(aDirectrix1.Direction())*10.0); anDir1AIS->SetText(" Directrix 1"); myObject3d.Append(anDir1AIS); Handle(AdaptorVec_AIS) anDir2AIS = new AdaptorVec_AIS(aDirectrix2.Location(), gp_Vec(aDirectrix2.Direction())*10.0); anDir2AIS->SetText(" Directrix 2"); myObject3d.Append(anDir2AIS); DisplayPnt(aFocus1, "Focus 1", Aspect_TOM_PLUS, 2.0); DisplayPnt(aFocus2, "Focus 2", Aspect_TOM_PLUS, 2.0); DisplayPnt(aLocation, "Location", Aspect_TOM_O_STAR, 2.0); Handle(Geom_Hyperbola) aGeomHyperbola = new Geom_Hyperbola(aHypr); Handle(Geom_TrimmedCurve) aTrimmedHyperbola = new Geom_TrimmedCurve(aGeomHyperbola, 2.0, -2.0); Handle(AdaptorCurve_AIS) anAisHyperbola = new AdaptorCurve_AIS(aTrimmedHyperbola); myObject3d.Append(anAisHyperbola); } void GeometrySamples::ProjectionOfPoint3dSample() { gp_Sphere aSphere(gp_Ax3(), 10.0); gp_Pnt aBasePnt(20.0, 20.0, 20.0); // A projection point in surface coordinate gp_Pnt2d aPrjPnt2d = ProjLib::Project(aSphere, aBasePnt); gp_Pnt aPrjPnt = ElSLib::Value(aPrjPnt2d.X(), aPrjPnt2d.Y(), aSphere); DisplayPnt(aBasePnt, "Base point", Aspect_TOM_PLUS, 2.0); DisplayPnt(aPrjPnt, "Projection point", Aspect_TOM_O_STAR, 2.0); Handle(Geom_SphericalSurface) aSphericalSurface = new Geom_SphericalSurface(aSphere); Handle(AIS_Shape) anAisSphere = new AIS_Shape(BRepBuilderAPI_MakeFace( aSphericalSurface, 0.0, 2.0*M_PI, 0.0, 2.0*M_PI, Precision::Confusion()).Shape()); myObject3d.Append(anAisSphere); } void GeometrySamples::MinimalDistance3dSample() { gp_Cylinder aCylinder(gp_Ax3(gp_Pnt(), gp_Dir(0.0, 0.0, 1.0)), 10.0); gp_Lin aLine(gp_Pnt(20.0, 0.0, 5.0), gp_Dir(0.0, 1.0, 0.0)); Extrema_ExtElCS anExtrema_ExtElCS(aLine, aCylinder); if (anExtrema_ExtElCS.IsDone()) { NCollection_Array1 aVecArray(1, anExtrema_ExtElCS.NbExt()); NCollection_Array1 aPntArray(1, anExtrema_ExtElCS.NbExt()); for (Standard_Integer i = 1; i <= anExtrema_ExtElCS.NbExt(); i++) { Extrema_POnCurv aCurvPoint; Extrema_POnSurf aSurfPoint; anExtrema_ExtElCS.Points(i, aCurvPoint, aSurfPoint); gp_Pnt aCurvPnt = aCurvPoint.Value(); gp_Pnt aSurfPnt = aSurfPoint.Value(); DisplayPnt(aCurvPnt, TCollection_AsciiString(i), Aspect_TOM_O_PLUS, 2.0); DisplayPnt(aSurfPnt, TCollection_AsciiString(i), Aspect_TOM_O_STAR, 2.0); gp_Vec aVec(aCurvPnt, aSurfPnt); aVecArray.SetValue(i, aVec); aPntArray.SetValue(i, aCurvPnt); } Standard_Integer aMinDistIndex(0); Standard_Real aMinDistance = std::numeric_limits::max(); for (Standard_Integer i = 1; i <= anExtrema_ExtElCS.NbExt(); i++) { if (aMinDistance > aVecArray(i).Magnitude()) { aMinDistIndex = i; aMinDistance = aVecArray(i).Magnitude(); } } Handle(AdaptorVec_AIS) anMinDistanceAis = new AdaptorVec_AIS(aPntArray(aMinDistIndex), aVecArray(aMinDistIndex)); anMinDistanceAis->SetText(" Min distance"); myObject3d.Append(anMinDistanceAis); } Handle(Geom_CylindricalSurface) aCylindricalSurface = new Geom_CylindricalSurface(aCylinder); Handle(AIS_Shape) anAisCylinder = new AIS_Shape(BRepBuilderAPI_MakeFace( aCylindricalSurface, 0.0, 2.0*M_PI, 0.0, 10.0, Precision::Confusion()).Shape()); myObject3d.Append(anAisCylinder); Handle(AdaptorVec_AIS) anLineAis = new AdaptorVec_AIS(aLine.Location(), aLine.Direction(), 8.0); anLineAis->SetText(" gp_Lin"); myObject3d.Append(anLineAis); } void GeometrySamples::Intersection3dSample() { gp_Lin aLine(gp_Pnt(0.0, 0.0, 10.0), gp_Dir(0.0, 1.0, 0.0)); gp_Cone aCone(gp_Ax3(gp_Pnt(), gp_Dir(0.0, 0.0, 1.0)), 0.25*M_PI, 0.0); IntAna_Quadric anIntAna_Quadric(aCone); IntAna_IntConicQuad anIntAna_IntConicQuad(aLine, anIntAna_Quadric); if (anIntAna_IntConicQuad.IsDone()) { for (int i = 1; i <= anIntAna_IntConicQuad.NbPoints(); i++) { const gp_Pnt& aIntersectionPnt = anIntAna_IntConicQuad.Point(i); DisplayPnt(aIntersectionPnt, TCollection_AsciiString(i)); } } Handle(AdaptorVec_AIS) aLineVecAIS = new AdaptorVec_AIS(aLine.Location(), gp_Vec(aLine.Direction())*5.0); aLineVecAIS->SetText(" Base vector"); myObject3d.Append(aLineVecAIS); Handle(Geom_ConicalSurface) aConicalSurface = new Geom_ConicalSurface(aCone); Handle(AIS_Shape) anAisCone = new AIS_Shape(BRepBuilderAPI_MakeFace( aConicalSurface, 0.0, 2.0*M_PI, 0.0, 20.0, Precision::Confusion()).Shape()); myObject3d.Append(anAisCone); } void GeometrySamples::TranslatedPoint2dSample() { gp_Pnt2d aPnt1; gp_Pnt2d aPnt2 = aPnt1.Translated(gp_Vec2d(10.0, 10.0)); DisplayPnt(aPnt1, "1", Aspect_TOM_PLUS, 1.0); DisplayPnt(aPnt2, "2", Aspect_TOM_PLUS, 1.0); gp_Vec2d aTranslationVec(aPnt1, aPnt2); Handle(AdaptorVec_AIS) aVecAIS = new AdaptorVec_AIS(aPnt1, aTranslationVec); aVecAIS->SetText(" Translation"); myObject2d.Append(aVecAIS); } void GeometrySamples::RotatedDirection2dSample() { gp_Dir2d aBaseDir(1.0, 1.0); gp_Dir2d aRotatedDir = aBaseDir.Rotated(M_PI_4); myResult << "An angle between directions: " << aBaseDir.Angle(aRotatedDir)*180.0 / M_PI << " grad"; Handle(AdaptorVec_AIS) aBaseAIS = new AdaptorVec_AIS(gp_Pnt2d(), aBaseDir, 5.0); aBaseAIS->SetText(" Base"); myObject2d.Append(aBaseAIS); Handle(AdaptorVec_AIS) aRotatedAIS = new AdaptorVec_AIS(gp_Pnt2d(), aRotatedDir, 5.0); aRotatedAIS->SetText(" Rotated"); myObject2d.Append(aRotatedAIS); } void GeometrySamples::MirroredAxis2dSample() { gp_Ax22d aBaseAx(gp_Pnt2d(10.0, 0.0), gp_Dir2d(1.0, 0.0), Standard_True); gp_Ax22d aMirrorAx = aBaseAx.Mirrored(gp_Pnt2d()); DisplayPnt(gp_Pnt2d(), "Mirror point", Aspect_TOM_PLUS, 1.0); Handle(AdaptorVec_AIS) aBaseX_AIS = new AdaptorVec_AIS(aBaseAx.Location(), aBaseAx.XDirection(), 5.0); aBaseX_AIS->SetText(" X (Base)"); myObject2d.Append(aBaseX_AIS); Handle(AdaptorVec_AIS) aBaseY_AIS = new AdaptorVec_AIS(aBaseAx.Location(), aBaseAx.YDirection(), 5.0); aBaseY_AIS->SetText("Y (Base)"); myObject2d.Append(aBaseY_AIS); Handle(AdaptorVec_AIS) aMirrorX_AIS = new AdaptorVec_AIS(aMirrorAx.Location(), aMirrorAx.XDirection(), 5.0); aMirrorX_AIS->SetText("X (Mirror)"); myObject2d.Append(aMirrorX_AIS); Handle(AdaptorVec_AIS) aMirrorY_AIS = new AdaptorVec_AIS(aMirrorAx.Location(), aMirrorAx.YDirection(), 5.0); aMirrorY_AIS->SetText(" Y (Mirror)"); myObject2d.Append(aMirrorY_AIS); } void GeometrySamples::TransformedEllipse2dSample() { // Creates an ellipse with the major axis, the major and the minor radius. // The location of the MajorAxis is the center of the ellipse.The sense of // parametrization is given by Sense.Warnings : It is possible to create // an ellipse with MajorRadius = MinorRadius.Raises // ConstructionError if MajorRadius < MinorRadius or MinorRadius < 0.0. gp_Elips2d aBaseEllips(gp_Ax2d(gp_Pnt2d(), gp_Dir2d(1.0, 0.0)), 20.0, 10.0); gp_Trsf2d aRotTrsf; aRotTrsf.SetRotation(gp_Pnt2d(), M_PI_4); gp_Trsf2d aScaleTrsf; aScaleTrsf.SetScale(gp_Pnt2d(), 1.5); gp_Trsf2d aTranslTrsf; aTranslTrsf.SetTranslation(gp_Vec2d(30.0, 0.0)); gp_Trsf2d aComplexTrsf = aRotTrsf * aScaleTrsf * aTranslTrsf; gp_Elips2d aTransfEllips = aBaseEllips.Transformed(aComplexTrsf); Handle(Geom2d_Ellipse) aBaseEllipse = new Geom2d_Ellipse(aBaseEllips); Handle(AdaptorCurve2d_AIS) anAisBaseEllipse = new AdaptorCurve2d_AIS(aBaseEllipse, Aspect_TOL_DASH); myObject2d.Append(anAisBaseEllipse); Handle(Geom2d_Ellipse) aTransfEllipse = new Geom2d_Ellipse(aTransfEllips); Handle(AdaptorCurve2d_AIS) anAisTransfEllipse = new AdaptorCurve2d_AIS(aTransfEllipse, Aspect_TOL_DASH); myObject2d.Append(anAisTransfEllipse); } void GeometrySamples::ConjugateObjects2dSample() { gp_Parab2d aParab(gp_Ax2d(), 20.0); gp_Ax2d aDirectrix = aParab.Directrix(); gp_Pnt2d aFocus = aParab.Focus(); gp_Pnt2d aLocation = aParab.Location(); gp_Ax2d aMirror = aParab.MirrorAxis(); Handle(AdaptorVec_AIS) aDirectAIS = new AdaptorVec_AIS(aDirectrix.Location(), gp_Vec2d(aDirectrix.Direction())*10.0); aDirectAIS->SetText(" Directrix"); myObject2d.Append(aDirectAIS); Handle(AdaptorVec_AIS) aMirrorAIS = new AdaptorVec_AIS(aMirror.Location(), gp_Vec2d(aMirror.Direction())*10.0); aMirrorAIS->SetText(" Mirror Axis"); myObject2d.Append(aMirrorAIS); DisplayPnt(aFocus, "Focus", Aspect_TOM_PLUS, -3.0); DisplayPnt(aLocation, " Location", Aspect_TOM_O_STAR, 3.0); Handle(Geom2d_Parabola) aGeomParabola = new Geom2d_Parabola(aParab); Handle(Geom2d_TrimmedCurve) aTrimmedParabola = new Geom2d_TrimmedCurve(aGeomParabola, 40.0, -40.0); Handle(AdaptorCurve2d_AIS) anAisParabola = new AdaptorCurve2d_AIS(aTrimmedParabola, Aspect_TOL_DOT); myObject2d.Append(anAisParabola); } void GeometrySamples::Tangent2dSample() { gp_Circ2d aCirc1(gp_Ax2d(gp_Pnt2d(0.0, 0.0), gp_Vec2d(1.0, 0.0)), 10.0); gp_Circ2d aCirc2 = aCirc1.Translated(gp_Vec2d(50.0, 0.0)); aCirc2.SetRadius(20.0); GccEnt_QualifiedCirc aQaCirc1(aCirc1, GccEnt_outside); GccEnt_QualifiedCirc aQaCirc2(aCirc2, GccEnt_outside); GccAna_Lin2d2Tan aLin2d2Tan(aQaCirc1, aQaCirc2, 1E-6); if (aLin2d2Tan.IsDone()) { for (int i = 1; i <= aLin2d2Tan.NbSolutions(); i++) { const gp_Lin2d& aTangentLin = aLin2d2Tan.ThisSolution(i); Handle(AdaptorVec_AIS) anAisLin = new AdaptorVec_AIS(aTangentLin.Location(), aTangentLin.Direction(), 20.0); myObject2d.Append(anAisLin); } } Handle(Geom2d_Circle) aCircle1 = new Geom2d_Circle(aCirc1); Handle(AdaptorCurve2d_AIS) anAisCirc1 = new AdaptorCurve2d_AIS(aCircle1, Aspect_TOL_SOLID); myObject2d.Append(anAisCirc1); Handle(Geom2d_Circle) aCircle2 = new Geom2d_Circle(aCirc2); Handle(AdaptorCurve2d_AIS) anAisCirc2 = new AdaptorCurve2d_AIS(aCircle2, Aspect_TOL_SOLID); myObject2d.Append(anAisCirc2); } void GeometrySamples::ProjectionOfPoint2dSample() { gp_Pnt2d aPntToProject(40.0, 40.0); gp_Circ2d aCirc(gp_Ax2d(), 20.0); Handle(Geom2d_Circle) aGeom_Circle = new Geom2d_Circle(aCirc); Geom2dAPI_ProjectPointOnCurve aProjector(aPntToProject, aGeom_Circle); gp_Pnt2d aProjectionPnt = aProjector.NearestPoint(); Handle(AdaptorCurve2d_AIS) anAisCirc = new AdaptorCurve2d_AIS(aGeom_Circle, Aspect_TOL_SOLID); myObject2d.Append(anAisCirc); DisplayPnt(aPntToProject, "Pnt to project"); DisplayPnt(aProjectionPnt, "Projection Pnt", Aspect_TOM_O_STAR); } void GeometrySamples::MinimalDistance2dSample() { gp_Lin2d aLin(gp_Pnt2d(-40.0, 0.0), gp_Dir2d(1.0, 1.0)); Handle(Geom2d_Line) aGeom_Line = new Geom2d_Line(aLin); gp_Circ2d aCirc(gp_Ax2d(), 20.0); Handle(Geom2d_Circle) aGeom_Circle = new Geom2d_Circle(aCirc); Geom2dAPI_ExtremaCurveCurve anExtremaFinder(aGeom_Line, aGeom_Circle, std::numeric_limits::min(), std::numeric_limits::max(), 0.0, M_PI*2.0); if (anExtremaFinder.NbExtrema()) { gp_Pnt2d aPnt1, aPnt2; anExtremaFinder.NearestPoints(aPnt1, aPnt2); myResult << "Extrema found: " << anExtremaFinder.NbExtrema() << std::endl; myResult << "Minimal distance: " << anExtremaFinder.LowerDistance() << std::endl; DisplayPnt(aPnt1, "1"); DisplayPnt(aPnt2, "2"); } else { myResult << "No Extrema found" << std::endl; } Handle(AdaptorCurve2d_AIS) anAisCirc = new AdaptorCurve2d_AIS(aGeom_Circle, Aspect_TOL_SOLID); myObject2d.Append(anAisCirc); Handle(AdaptorVec_AIS) anAisLin = new AdaptorVec_AIS(aLin.Location(), aLin.Direction(), 60.0); anAisLin->SetText(" gp_Lin2d"); myObject2d.Append(anAisLin); } void GeometrySamples::Intersection2dSample() { gp_Lin2d aLin(gp_Pnt2d(-20.0, 20.0), gp_Dir2d(1.0, -1.5)); Handle(Geom2d_Line) aGeom_Line = new Geom2d_Line(aLin); gp_Parab2d aParab(gp_Ax2d(), 20.0); Handle(Geom2d_Parabola) aGeom_Parabola = new Geom2d_Parabola(aParab); Geom2dAPI_InterCurveCurve anIntersectFinder(aGeom_Line, aGeom_Parabola); for (Standard_Integer i = 1; i <= anIntersectFinder.NbPoints(); i++) { gp_Pnt2d aPnt = anIntersectFinder.Point(i); DisplayPnt(aPnt, i); } myResult << "Number of intersections : " << anIntersectFinder.NbPoints() << std::endl; Handle(Geom2d_Parabola) aGeomParabola = new Geom2d_Parabola(aParab); Handle(Geom2d_TrimmedCurve) aTrimmedParabola = new Geom2d_TrimmedCurve(aGeomParabola, 60.0, -60.0); Handle(AdaptorCurve2d_AIS) anAisParabola = new AdaptorCurve2d_AIS(aTrimmedParabola, Aspect_TOL_DOT); myObject2d.Append(anAisParabola); Handle(AdaptorVec_AIS) anAisLin = new AdaptorVec_AIS(aLin.Location(), aLin.Direction(), 90.0); anAisLin->SetText(" gp_Lin2d"); myObject2d.Append(anAisLin); } void GeometrySamples::PointInfo3dSample() { gp_Pnt aPnt1; gp_Pnt aPnt2(10.0, 10.0, 10.0); gp_Pnt aPnt3(10.0, -10.0, 0.0); gp_Pnt aPnt4(10.0, 10.0, 10.0); Standard_Boolean anIsEqual2_3 = aPnt2.IsEqual(aPnt3, 1E-6); Standard_Boolean anIsEqual2_4 = aPnt2.IsEqual(aPnt4, 1E-6); Standard_Real aDistance1_2 = aPnt1.Distance(aPnt2); Standard_Real aDistance2_4 = aPnt2.Distance(aPnt4); Standard_Real aSquareDistance1_2 = aPnt1.SquareDistance(aPnt2); Standard_Real aSquareDistance2_4 = aPnt2.SquareDistance(aPnt4); myResult << "A coordinate of a point 1: X: " << aPnt1.X() << " Y: " << aPnt1.Y() << " Z: " << aPnt1.Z() << std::endl; myResult << "A coordinate of a point 2: X: " << aPnt2.X() << " Y: " << aPnt2.Y() << " Z: " << aPnt2.Z() << std::endl; myResult << "A coordinate of a point 3: X: " << aPnt3.X() << " Y: " << aPnt3.Y() << " Z: " << aPnt3.Z() << std::endl; myResult << "A coordinate of a point 4: X: " << aPnt4.X() << " Y: " << aPnt4.Y() << " Z: " << aPnt4.Z() << std::endl; if (anIsEqual2_3) { myResult << "A point 2 is equal to a point 3" << std::endl; } else { myResult << "A point 2 is different from a point 3" << std::endl; } if (anIsEqual2_4) { myResult << "A point 2 is equal to a point 4" << std::endl; } else { myResult << "A point 2 is different from a point 4" << std::endl; } myResult << "A distance from a point 1 to a point 2 is: " << aDistance1_2 << std::endl; myResult << "A distance from a point 2 to a point 4 is: " << aDistance2_4 << std::endl; myResult << "A square distance from a point 1 to a point 2 is: " << aSquareDistance1_2 << std::endl; myResult << "A square distance from a point 2 to a point 4 is: " << aSquareDistance2_4 << std::endl; DisplayPnt(aPnt1, "1", Aspect_TOM_PLUS, 0.5); DisplayPnt(aPnt2, "2 & 4", Aspect_TOM_PLUS, 0.5); DisplayPnt(aPnt3, "3", Aspect_TOM_PLUS, 0.5); DisplayPnt(aPnt4, "", Aspect_TOM_PLUS, 0.5); } void GeometrySamples::EllipseInfo3dSample() { gp_Elips anElips(gp_Ax2(gp_Pnt(), gp_Dir(1.0, 0.0, 0.0)), 20.0, 10.0); Standard_Real anArea = anElips.Area(); // Returns the eccentricity of the ellipse between 0.0 and 1.0 // If f is the distance between the center of the ellipse and the Focus1 then // the eccentricity e = f / MajorRadius. Returns 0 if MajorRadius = 0. Standard_Real anEccentricity = anElips.Eccentricity(); // Returns the distance between the center of the ellipse and focus1 or focus2. Standard_Real aFocal = anElips.Focal(); // Returns p = (1 - e * e) * MajorRadius where e is the eccentricity // of the ellipse. Returns 0 if MajorRadius = 0. Standard_Real aParameter = anElips.Parameter(); myResult << "Ellipse area = " << anArea << " square units" << std::endl; myResult << "Eccentricity = " << anEccentricity; myResult << "Focal distance = " << aFocal; myResult << "Ellipse parameter = " << aParameter; gp_Pnt aCenter = anElips.Location(); gp_Pnt aFocus1 = anElips.Focus1(); gp_Pnt aFocus2 = anElips.Focus2(); DisplayPnt(aCenter, "Center", Aspect_TOM_PLUS, 2.0); DisplayPnt(aFocus1, "focus 1", Aspect_TOM_PLUS, 2.0); DisplayPnt(aFocus2, "focus 2", Aspect_TOM_PLUS, 2.0); Handle(Geom_Ellipse) aGeomEllipse = new Geom_Ellipse(anElips); Handle(AdaptorCurve_AIS) anAisEllipce = new AdaptorCurve_AIS(aGeomEllipse); myObject3d.Append(anAisEllipce); } void GeometrySamples::PointInfo2dSample() { gp_Pnt2d aPnt1; gp_Pnt2d aPnt2(10.0, 10.0); gp_Pnt2d aPnt3(10.0, -10.0); gp_Pnt2d aPnt4(10.0, 10.0); Standard_Boolean anIsEqual2_3 = aPnt2.IsEqual(aPnt3, 1E-6); Standard_Boolean anIsEqual2_4 = aPnt2.IsEqual(aPnt4, 1E-6); Standard_Real aDistance1_2 = aPnt1.Distance(aPnt2); Standard_Real aDistance2_4 = aPnt2.Distance(aPnt4); Standard_Real aSquareDistance1_2 = aPnt1.SquareDistance(aPnt2); Standard_Real aSquareDistance2_4 = aPnt2.SquareDistance(aPnt4); myResult << "A coordinate of a point 1: X: " << aPnt1.X() << " Y: " << aPnt1.Y() << std::endl; myResult << "A coordinate of a point 2: X: " << aPnt2.X() << " Y: " << aPnt2.Y() << std::endl; myResult << "A coordinate of a point 3: X: " << aPnt3.X() << " Y: " << aPnt3.Y() << std::endl; myResult << "A coordinate of a point 4: X: " << aPnt4.X() << " Y: " << aPnt4.Y() << std::endl; if (anIsEqual2_3) { myResult << "A point 2 is equal to a point 3" << std::endl; } else { myResult << "A point 2 is different from a point 3" << std::endl; } if (anIsEqual2_4) { myResult << "A point 2 is equal to a point 4" << std::endl; } else { myResult << "A point 2 is different from a point 4" << std::endl; } myResult << "A distance from a point 1 to a point 2 is: " << aDistance1_2 << std::endl; myResult << "A distance from a point 2 to a point 4 is: " << aDistance2_4 << std::endl; myResult << "A square distance from a point 1 to a point 2 is: " << aSquareDistance1_2 << std::endl; myResult << "A square distance from a point 2 to a point 4 is: " << aSquareDistance2_4 << std::endl; DisplayPnt(aPnt1, "1", Aspect_TOM_PLUS, 0.5); DisplayPnt(aPnt2, "2 & 4", Aspect_TOM_PLUS, 0.5); DisplayPnt(aPnt3, "3", Aspect_TOM_PLUS, 0.5); DisplayPnt(aPnt4, ""); } void GeometrySamples::CircleInfo2dSample() { gp_Circ2d aCirc(gp_Ax22d(gp_Pnt2d(10.0, 10.0), gp_Vec2d(1.0, 0.0)), 10.0); gp_Pnt2d aPnt1(0.0, 10.0); gp_Pnt2d aPnt2(10.0, 0.0); gp_Pnt2d aPnt3(20.0, 20.0); if (aCirc.Contains(aPnt1, 1E-6)) { DisplayPnt(aPnt1, "1", Aspect_TOM_STAR, 3.0); myResult << "A circle contains a point 1" << std::endl; } else { DisplayPnt(aPnt1, "1", Aspect_TOM_PLUS, 1.0); myResult << "A circle does contain a point 1" << std::endl; } if (aCirc.Contains(aPnt2, 1E-6)) { DisplayPnt(aPnt2, "2", Aspect_TOM_STAR, 1.0); myResult << "A circle contains a point 2" << std::endl; } else { DisplayPnt(aPnt2, "2", Aspect_TOM_PLUS, 1.0); myResult << "A circle does contain a point 2" << std::endl; } if (aCirc.Contains(aPnt3, 1E-6)) { DisplayPnt(aPnt3, "3", Aspect_TOM_STAR, 1.0); myResult << "A circle contains a point 3" << std::endl; } else { DisplayPnt(aPnt3, "3", Aspect_TOM_PLUS, 1.0); myResult << "A circle does contain a point 3" << std::endl; } myResult << "Circle area = " << aCirc.Area() << "square units" << std::endl; Handle(Geom2d_Circle) aGeomCircle = new Geom2d_Circle(aCirc); Handle(AdaptorCurve2d_AIS) anAisCirc = new AdaptorCurve2d_AIS(aGeomCircle); myObject2d.Append(anAisCirc); } void GeometrySamples::FreeStyleCurves3dSample() { // Define points. gp_Pnt aPnt1(0.0, 0.0, 0.0); gp_Pnt aPnt2(5.0, 5.0, 0.0); gp_Pnt aPnt3(10.0, 5.0, 0.0); gp_Pnt aPnt4(15.0, 0.0, 0.0); // Add points to the curve poles array. TColgp_Array1OfPnt aPoles(1, 4); aPoles.SetValue(1, aPnt1); aPoles.SetValue(2, aPnt2); aPoles.SetValue(3, aPnt3); aPoles.SetValue(4, aPnt4); // Define BSpline weights. TColStd_Array1OfReal aBSplineWeights(1, 4); aBSplineWeights.SetValue(1, 1.0); aBSplineWeights.SetValue(2, 0.5); aBSplineWeights.SetValue(3, 0.5); aBSplineWeights.SetValue(4, 1.0); // Define knots. TColStd_Array1OfReal aKnots(1, 2); aKnots.SetValue(1, 0.0); aKnots.SetValue(2, 1.0); // Define multiplicities. TColStd_Array1OfInteger aMults(1, 2); aMults.SetValue(1, 4); aMults.SetValue(2, 4); // Define BSpline degree and periodicity. Standard_Integer aDegree = 3; Standard_Boolean aPeriodic = Standard_False; // Create a BSpline curve. Handle(Geom_BSplineCurve) aBSplineCurve = new Geom_BSplineCurve( aPoles, aBSplineWeights, aKnots, aMults, aDegree, aPeriodic); myResult << "Geom_BSplineCurve was created in red" << std::endl; // Define Bezier weights. TColStd_Array1OfReal aBezierWeights(1, 4); aBezierWeights.SetValue(1, 0.5); aBezierWeights.SetValue(2, 1.5); aBezierWeights.SetValue(3, 1.5); aBezierWeights.SetValue(4, 0.5); // Create Bezier curve. Handle(Geom_BezierCurve) aBezierCurve = new Geom_BezierCurve(aPoles, aBezierWeights); myResult << "Geom_BezierCurve was created in green" << std::endl; Handle(AIS_ColoredShape) anAisBSplineCurve = new AIS_ColoredShape( BRepBuilderAPI_MakeEdge(aBSplineCurve).Shape()); Handle(AIS_ColoredShape) anAisBezierCurve = new AIS_ColoredShape( BRepBuilderAPI_MakeEdge(aBezierCurve).Shape()); anAisBSplineCurve->SetColor(Quantity_Color(Quantity_NOC_RED)); anAisBezierCurve->SetColor(Quantity_Color(Quantity_NOC_GREEN)); myObject3d.Append(anAisBSplineCurve); myObject3d.Append(anAisBezierCurve); myObject3d.Append(new AIS_Point(new Geom_CartesianPoint(aPnt1))); myObject3d.Append(new AIS_Point(new Geom_CartesianPoint(aPnt2))); myObject3d.Append(new AIS_Point(new Geom_CartesianPoint(aPnt3))); myObject3d.Append(new AIS_Point(new Geom_CartesianPoint(aPnt4))); } void GeometrySamples::AnalyticalSurfaces3dSample() { // Define a XY plane. gp_Pln aPln(gp::Origin(), gp::DZ()); // Create plane geometry. Handle(Geom_Plane) aPlaneSurf = new Geom_Plane(aPln); myResult << "Geom_Plane was created in red" << std::endl; // Define a cylinder. gp_Cylinder aCyl(gp::XOY(), 2.5); // Create cylindrical surface. Handle(Geom_CylindricalSurface) aCylSurf = new Geom_CylindricalSurface(aCyl); myResult << "Geom_CylindricalSurface was created in green" << std::endl; // Define a cone. gp_Cone aCone(gp::XOY(), M_PI_4, 2.5); // Create conical surface. Handle(Geom_ConicalSurface) aConeSurf = new Geom_ConicalSurface(aCone); myResult << "Geom_ConicalSurface was created in blue" << std::endl; // Define a sphere. gp_Pnt aSphereCenter(15.0, 15.0, 15.0); gp_Sphere aSphere(gp_Ax3(aSphereCenter, gp::DZ()), 8.0); // Create conical surface. Handle(Geom_SphericalSurface) aSphereSurf = new Geom_SphericalSurface(aSphere); myResult << "Geom_SphericalSurface was created in cyan" << std::endl; // Define a sphere. gp_Pnt aTorusCenter(-15.0, -15.0, 25.0); gp_Torus aTorus(gp_Ax3(aTorusCenter, gp::DZ()), 15.0, 5.0); // Create toroidal surface. Handle(Geom_ToroidalSurface) aTorusSurf = new Geom_ToroidalSurface(aTorus); myResult << "Geom_ToroidalSurface was created in yellow" << std::endl; Handle(AIS_ColoredShape) anAisPlane = new AIS_ColoredShape(BRepBuilderAPI_MakeFace( aPlaneSurf, 0.0, 20.0, 0.0, 20.0, Precision::Confusion()).Shape()); Handle(AIS_ColoredShape) anAisCylinder = new AIS_ColoredShape(BRepBuilderAPI_MakeFace( aCylSurf, 0.0, 2.0 * M_PI, 5.0, 15.0, Precision::Confusion()).Shape()); Handle(AIS_ColoredShape) anAisCone = new AIS_ColoredShape(BRepBuilderAPI_MakeFace( aConeSurf, 0.0, 2.0 * M_PI, 0.0, 15.0, Precision::Confusion()).Shape()); Handle(AIS_ColoredShape) anAisSphere = new AIS_ColoredShape(BRepBuilderAPI_MakeFace( aSphereSurf, Precision::Confusion()).Shape()); Handle(AIS_ColoredShape) anAisTorus = new AIS_ColoredShape(BRepBuilderAPI_MakeFace( aTorusSurf, Precision::Confusion()).Shape()); anAisPlane->SetColor(Quantity_Color(Quantity_NOC_RED)); anAisCylinder->SetColor(Quantity_Color(Quantity_NOC_GREEN)); anAisCone->SetColor(Quantity_Color(Quantity_NOC_BLUE1)); anAisSphere->SetColor(Quantity_Color(Quantity_NOC_CYAN1)); anAisTorus->SetColor(Quantity_Color(Quantity_NOC_YELLOW)); myObject3d.Append(anAisPlane); myObject3d.Append(anAisCylinder); myObject3d.Append(anAisCone); myObject3d.Append(anAisSphere); myObject3d.Append(anAisTorus); } void GeometrySamples::FreeStyleSurfaces3dSample() { // Define a 4x4 grid of points for BSpline surface. TColgp_Array2OfPnt aBSplinePnts(1, 4, 1, 4); for (Standard_Integer i = 1; i <= 4; ++i) { gp_Pnt aPnt; aPnt.SetX(5.0 * i); for (Standard_Integer j = 1; j <= 4; ++j) { aPnt.SetY(5.0 * j); if (1 < i && i < 4 && 1 < j && j < 4) { aPnt.SetZ(5.0); } else { aPnt.SetZ(0.0); } aBSplinePnts.SetValue(i, j, aPnt); } } // Define a 4x4 grid of points for Bezier surface. TColgp_Array2OfPnt aBezierPnts(1, 4, 1, 4); for (Standard_Integer i = 1; i <= 4; ++i) { gp_Pnt aPnt; aPnt.SetX(20.0 + 5.0 * i); for (Standard_Integer j = 1; j <= 4; ++j) { aPnt.SetY(20.0 + 5.0 * j); if (1 < i && i < 4 && 1 < j && j < 4) { aPnt.SetZ(5.0); } else { aPnt.SetZ(0.0); } aBezierPnts.SetValue(i, j, aPnt); } } // Define BSpline weights. TColStd_Array2OfReal aBSplineWeights(1, 4, 1, 4); for (Standard_Integer i = 1; i <= 4; ++i) { for (Standard_Integer j = 1; j <= 4; ++j) { if (1 < i && i < 4 && 1 < j && j < 4) { aBSplineWeights.SetValue(i, j, 0.5); } else { aBSplineWeights.SetValue(i, j, 1.0); } } } // Define knots. TColStd_Array1OfReal aUKnots(1, 2), aVKnots(1, 2); aUKnots.SetValue(1, 0.0); aUKnots.SetValue(2, 1.0); aVKnots.SetValue(1, 0.0); aVKnots.SetValue(2, 1.0); // Define multiplicities. TColStd_Array1OfInteger aUMults(1, 2), aVMults(1, 2); aUMults.SetValue(1, 4); aUMults.SetValue(2, 4); aVMults.SetValue(1, 4); aVMults.SetValue(2, 4); // Define BSpline degree and periodicity. Standard_Integer aUDegree = 3; Standard_Integer aVDegree = 3; Standard_Boolean aUPeriodic = Standard_False; Standard_Boolean aVPeriodic = Standard_False; // Create a BSpline surface. Handle(Geom_BSplineSurface) aBSplineSurf = new Geom_BSplineSurface( aBSplinePnts, aBSplineWeights, aUKnots, aVKnots, aUMults, aVMults, aUDegree, aVDegree, aUPeriodic, aVPeriodic); myResult << "Geom_BSplineSurface was created in red" << std::endl; // Define BSpline weights. TColStd_Array2OfReal aBezierWeights(1, 4, 1, 4); for (Standard_Integer i = 1; i <= 4; ++i) { for (Standard_Integer j = 1; j <= 4; ++j) { if (1 < i && i < 4 && 1 < j && j < 4) { aBezierWeights.SetValue(i, j, 1.5); } else { aBezierWeights.SetValue(i, j, 0.5); } } } // Create a Bezier surface. Handle(Geom_BezierSurface) aBezierSurf = new Geom_BezierSurface(aBezierPnts, aBezierWeights); myResult << "Geom_BezierSurface was created in green" << std::endl; Handle(AIS_ColoredShape) anAisBSplineSurf = new AIS_ColoredShape( BRepBuilderAPI_MakeFace(aBSplineSurf, Precision::Confusion()).Shape()); Handle(AIS_ColoredShape) anAisBezierSurf = new AIS_ColoredShape( BRepBuilderAPI_MakeFace(aBezierSurf, Precision::Confusion()).Shape()); anAisBSplineSurf->SetColor(Quantity_Color(Quantity_NOC_RED)); anAisBezierSurf->SetColor(Quantity_Color(Quantity_NOC_GREEN)); myObject3d.Append(anAisBSplineSurf); myObject3d.Append(anAisBezierSurf); for (TColgp_Array2OfPnt::Iterator anIt(aBSplinePnts); anIt.More(); anIt.Next()) { myObject3d.Append(new AIS_Point(new Geom_CartesianPoint(anIt.Value()))); } for (TColgp_Array2OfPnt::Iterator anIt(aBezierPnts); anIt.More(); anIt.Next()) { myObject3d.Append(new AIS_Point(new Geom_CartesianPoint(anIt.Value()))); } } void GeometrySamples::FreeStyleCurves2dSample() { // Define points. gp_Pnt2d aPnt1(0.0, 0.0); gp_Pnt2d aPnt2(5.0, 5.0); gp_Pnt2d aPnt3(10.0, 5.0); gp_Pnt2d aPnt4(15.0, 0.0); // Add points to the curve poles array. TColgp_Array1OfPnt2d aBSplinePoles(1, 4); aBSplinePoles.SetValue(1, aPnt1); aBSplinePoles.SetValue(2, aPnt2); aBSplinePoles.SetValue(3, aPnt3); aBSplinePoles.SetValue(4, aPnt4); // Define BSpline weights. TColStd_Array1OfReal aBSplineWeights(1, 4); aBSplineWeights.SetValue(1, 1.0); aBSplineWeights.SetValue(2, 0.5); aBSplineWeights.SetValue(3, 0.5); aBSplineWeights.SetValue(4, 1.0); // Define knots. TColStd_Array1OfReal aKnots(1, 2); aKnots.SetValue(1, 0.0); aKnots.SetValue(2, 1.0); // Define multiplicities. TColStd_Array1OfInteger aMults(1, 2); aMults.SetValue(1, 4); aMults.SetValue(2, 4); // Define BSpline degree and periodicity. Standard_Integer aDegree = 3; Standard_Boolean aPeriodic = Standard_False; // Create a BSpline curve. Handle(Geom2d_BSplineCurve) aBSplineCurve = new Geom2d_BSplineCurve(aBSplinePoles, aBSplineWeights, aKnots, aMults, aDegree, aPeriodic); TColgp_Array1OfPnt2d aBezierPoles(1, 4); gp_Vec2d anUp10Vec(0.0, 10.0); aBezierPoles.SetValue(1, aPnt1.Translated(anUp10Vec)); aBezierPoles.SetValue(2, aPnt2.Translated(anUp10Vec)); aBezierPoles.SetValue(3, aPnt3.Translated(anUp10Vec)); aBezierPoles.SetValue(4, aPnt4.Translated(anUp10Vec)); // Define Bezier weights. TColStd_Array1OfReal aBezierWeights(1, 4); aBezierWeights.SetValue(1, 0.5); aBezierWeights.SetValue(2, 1.5); aBezierWeights.SetValue(3, 1.5); aBezierWeights.SetValue(4, 0.5); // Create Bezier curve. Handle(Geom2d_BezierCurve) aBezierCurve = new Geom2d_BezierCurve(aBezierPoles, aBezierWeights); Handle(AdaptorCurve2d_AIS) anAisBSpline = new AdaptorCurve2d_AIS(aBSplineCurve); myObject2d.Append(anAisBSpline); Handle(AdaptorCurve2d_AIS) anAisBezier = new AdaptorCurve2d_AIS(aBezierCurve); myObject2d.Append(anAisBezier); DisplayPnt(aPnt1, "1", Aspect_TOM_PLUS, 0.5); DisplayPnt(aPnt2, "2", Aspect_TOM_PLUS, 0.5); DisplayPnt(aPnt3, "3", Aspect_TOM_PLUS, 0.5); DisplayPnt(aPnt4, "4", Aspect_TOM_PLUS, 0.5); } void GeometrySamples::TrimmedCurve3dSample() { // Define a circle placed in the origin of XY coordinate // plane and with the radius equal to 5. gp_Circ aCirc(gp::XOY(), 5.0); // Create a closed circular curve. Handle(Geom_Circle) aCircCurve = new Geom_Circle(aCirc); myResult << "Geom_Circle was created in yellow" << std::endl; // Cut off a quarter of the circle. Handle(Geom_TrimmedCurve) aCircQuater = new Geom_TrimmedCurve(aCircCurve, 0.0, M_PI_2); myResult << "Geom_TrimmedCurve was created in red" << std::endl; Handle(AIS_ColoredShape) anAisCirc = new AIS_ColoredShape (BRepBuilderAPI_MakeEdge(aCircCurve).Shape()); Handle(AIS_ColoredShape) anAisCircQuater = new AIS_ColoredShape (BRepBuilderAPI_MakeEdge(aCircQuater).Shape()); anAisCirc->SetColor(Quantity_Color(Quantity_NOC_YELLOW)); anAisCircQuater->SetColor(Quantity_Color(Quantity_NOC_RED)); anAisCircQuater->SetWidth(2.5); myObject3d.Append(anAisCirc); myObject3d.Append(anAisCircQuater); } void GeometrySamples::OffsetCurve3dSample() { // Define a circle placed in the origin of XY coordinate // plane and with the radius equal to 5. gp_Circ aCirc(gp::XOY(), 5.0); // Create a closed circular curve. Handle(Geom_Circle) aCircCurve = new Geom_Circle(aCirc); myResult << "Geom_Circle was created in yellow" << std::endl; // An offset curve is a curve at constant distance (Offset) from // a basis curve in a reference direction V. // The offset curve takes its parametrization from the basis curve. // The Offset curve is in the direction of the normal N // defined with the cross product T^V, where the vector T // is given by the first derivative on the basis curve with non zero length. // The distance offset may be positive or negative to indicate the // preferred side of the curve: // . distance offset >0 => the curve is in the direction of N // . distance offset <0 => the curve is in the direction of - N // On the Offset curve: // Value (U) = BasisCurve.Value(U) + (Offset * (T ^ V)) / ||T ^ V|| // At any point the Offset direction V must not be parallel to the // vector T and the vector T must not have null length else the // offset curve is not defined. // Expand the circle by Offset equal to a quarter of the radius // with direction V equal to Z. Standard_Real anExpandOffset = +aCirc.Radius() / 4.0; gp_Dir anExpandDir = gp::DZ(); Handle(Geom_OffsetCurve) anExpandCircCurve = new Geom_OffsetCurve( aCircCurve, anExpandOffset, anExpandDir); myResult << "Geom_OffsetCurve (expanded circle) was created in red" << std::endl; // Collapse the circle by Offset equal to a half of the radius with direction V equal to Z. Standard_Real anCollapseOffset = -aCirc.Radius() / 2.0; gp_Dir anCollapseDir = gp::DZ(); Handle(Geom_OffsetCurve) anCollapseCircCurve = new Geom_OffsetCurve (aCircCurve, anCollapseOffset, anCollapseDir); myResult << "Geom_OffsetCurve (collapsed circle) was created in green" << std::endl; Handle(AIS_ColoredShape) anAisCirc = new AIS_ColoredShape (BRepBuilderAPI_MakeEdge(aCircCurve).Shape()); Handle(AIS_ColoredShape) anAisExpandCirc = new AIS_ColoredShape (BRepBuilderAPI_MakeEdge(anExpandCircCurve).Shape()); Handle(AIS_ColoredShape) anAisCpllapsedCirc = new AIS_ColoredShape (BRepBuilderAPI_MakeEdge(anCollapseCircCurve).Shape()); anAisCirc->SetColor(Quantity_Color(Quantity_NOC_YELLOW)); anAisExpandCirc->SetColor(Quantity_Color(Quantity_NOC_RED)); anAisCpllapsedCirc->SetColor(Quantity_Color(Quantity_NOC_GREEN)); myObject3d.Append(anAisCirc); myObject3d.Append(anAisExpandCirc); myObject3d.Append(anAisCpllapsedCirc); } void GeometrySamples::BSplineFromCircle3dSample() { // Define a circle placed in the origin of XY coordinate // plane and with the radius equal to 5. gp_Circ aCirc(gp::XOY(), 5.0); // Create a closed circular curve. Handle(Geom_Circle) aCircCurve = new Geom_Circle(aCirc); myResult << "Geom_Circle was created in yellow" << std::endl; // Convert the circle curve to a BSpline one. Handle(Geom_BSplineCurve) aBSplineFromCirc = GeomConvert::CurveToBSplineCurve(aCircCurve); myResult << "Geom_BSplineCurve was created in red:" << std::endl; myResult << "Degree: " << aBSplineFromCirc->Degree() << std::endl; myResult << "Periodic: " << (aBSplineFromCirc->IsPeriodic() ? "Yes" : "No") << std::endl; myResult << "Poles: [" << aBSplineFromCirc->Poles().Size() << "]" << std::endl; for (TColgp_Array1OfPnt::Iterator anIt(aBSplineFromCirc->Poles()); anIt.More(); anIt.Next()) { myResult << " (" << anIt.Value().X() << ", " << anIt.Value().Y() << ", " << anIt.Value().Z() << ")" << std::endl; } Handle(AIS_ColoredShape) anAisCirc = new AIS_ColoredShape (BRepBuilderAPI_MakeEdge(aCircCurve).Shape()); Handle(AIS_ColoredShape) anAisBSpline = new AIS_ColoredShape (BRepBuilderAPI_MakeEdge(aBSplineFromCirc).Shape()); anAisCirc->SetColor(Quantity_Color(Quantity_NOC_YELLOW)); anAisBSpline->SetColor(Quantity_Color(Quantity_NOC_RED)); myObject3d.Append(anAisCirc); myObject3d.Append(anAisBSpline); } void GeometrySamples::TrimmedSurface3dSample() { // Define a XY plane. gp_Pln aPln(gp::XOY()); // Create a plane surface. Handle(Geom_Plane) aPlaneSurf = new Geom_Plane(aPln); myResult << "Geom_Plane was created" << std::endl; // Trim [0 ... 30 X 0 ... 50] rectangular range. Standard_Real aUMin = 0.0; Standard_Real aUMax = 30.0; Standard_Real aVMin = 0.0; Standard_Real aVMax = 50.0; Handle(Geom_RectangularTrimmedSurface) aTrimmedPlaneSurf = new Geom_RectangularTrimmedSurface(aPlaneSurf, aUMin, aUMax, aVMin, aVMax); myResult << "Geom_RectangularTrimmedSurface was created in red" << std::endl; Handle(AIS_Plane) anAisPlane = new AIS_Plane(aPlaneSurf); Handle(AIS_ColoredShape) anAisTimmedPlane = new AIS_ColoredShape (BRepBuilderAPI_MakeFace (aTrimmedPlaneSurf, 0.001).Shape()); anAisTimmedPlane->SetColor(Quantity_Color(Quantity_NOC_RED)); myObject3d.Append(anAisPlane); myObject3d.Append(anAisTimmedPlane); } void GeometrySamples::OffsetSurface3dSample() { // Define a XY plane. gp_Pln aPln(gp::XOY()); // Create a plane surface. Handle(Geom_Plane) aPlaneSurf = new Geom_Plane(aPln); myResult << "Geom_Plane was created" << std::endl; // An offset surface is defined by: // - the basis surface to which it is parallel, and // - the distance between the offset surface and its basis surface. // A point on the offset surface is built by measuring the // offset value along the normal vector at a point on the // basis surface. This normal vector is given by the cross // product D1u^D1v, where D1u and D1v are the // vectors tangential to the basis surface in the u and v // parametric directions at this point. The side of the // basis surface on which the offset is measured // depends on the sign of the offset value. // Offset the plane in the normal direction. Standard_Real aPosOffset = 10.0; Handle(Geom_OffsetSurface) aPosOffsetSurf = new Geom_OffsetSurface(aPlaneSurf, aPosOffset); myResult << "Geom_OffsetSurface with " << aPosOffset << " was created in red" << std::endl; // Offset the plane in direction opposite to the normal one. Standard_Real aNegOffset = -15.0; Handle(Geom_OffsetSurface) aNegOffsetSurf = new Geom_OffsetSurface(aPlaneSurf, aNegOffset); myResult << "Geom_OffsetSurface with " << aNegOffset << " was created in green" << std::endl; Handle(AIS_ColoredShape) anAisPlane = new AIS_ColoredShape( BRepBuilderAPI_MakeFace(aPlaneSurf, 0.0, 10.0, 0.0, 10.0, Precision::Confusion()).Shape()); Handle(AIS_ColoredShape) anAisPosOffsetPlane = new AIS_ColoredShape( BRepBuilderAPI_MakeFace(aPosOffsetSurf, 0.0, 10.0, 0.0, 10.0, Precision::Confusion()).Shape()); Handle(AIS_ColoredShape) anAisNegOffsetPlane = new AIS_ColoredShape( BRepBuilderAPI_MakeFace(aNegOffsetSurf, 0.0, 10.0, 0.0, 10.0, Precision::Confusion()).Shape()); anAisPosOffsetPlane->SetColor(Quantity_Color(Quantity_NOC_RED)); anAisNegOffsetPlane->SetColor(Quantity_Color(Quantity_NOC_GREEN)); myObject3d.Append(anAisPlane); myObject3d.Append(anAisPosOffsetPlane); myObject3d.Append(anAisNegOffsetPlane); } void GeometrySamples::ExtrusionSurface3dSample() { // Create an ellipse curve in XY plane. Standard_Real aMinorRadius = 10.0; Standard_Real aMajorRadius = 20.0; Handle(Geom_Ellipse) anEllipseCurve = new Geom_Ellipse(gp::XOY(), aMajorRadius, aMinorRadius); myResult << "Geom_Ellipse was created in yellow" << std::endl; // Make a linear extrusion of the ellipse at 45 degrees to Z axis gp_Dir aDirOfExtr = gp::DZ(); Handle(Geom_SurfaceOfLinearExtrusion) aLinExtrSurf = new Geom_SurfaceOfLinearExtrusion(anEllipseCurve, aDirOfExtr); myResult << "Geom_SurfaceOfLinearExtrusion was created in red" << std::endl; Handle(AIS_ColoredShape) anAisEllipse = new AIS_ColoredShape( BRepBuilderAPI_MakeEdge(anEllipseCurve).Shape()); Handle(AIS_ColoredShape) anAisExtrSurf = new AIS_ColoredShape( BRepBuilderAPI_MakeFace(aLinExtrSurf, 0.0, 2.0 * M_PI, 0.0, 30.0, Precision::Confusion()).Shape()); anAisEllipse->SetColor(Quantity_Color(Quantity_NOC_YELLOW)); anAisEllipse->SetWidth(2.5); anAisExtrSurf->SetColor(Quantity_Color(Quantity_NOC_RED)); myObject3d.Append(anAisEllipse); myObject3d.Append(anAisExtrSurf); } void GeometrySamples::RevolutionSurface3dSample() { // Create an ellipse curve in XY plane with // the center at (-10, 0, 0). Standard_Real aMinorRadius = 5.0; Standard_Real aMajorRadius = 10.0; gp_Pnt aCenter(-30.0, 0.0, 0.0); Handle(Geom_Ellipse) anEllipseCurve = new Geom_Ellipse(gp_Ax2(aCenter, gp::DZ()), aMajorRadius, aMinorRadius); myResult << "Geom_Ellipse was created in yellow" << std::endl; // Make a revolution of the ellipse around Y axis Handle(Geom_SurfaceOfRevolution) aRevolSurf = new Geom_SurfaceOfRevolution(anEllipseCurve, gp::OY()); myResult << "Geom_SurfaceOfRevolution was created in red" << std::endl; Handle(AIS_ColoredShape) anAisEllipse = new AIS_ColoredShape( BRepBuilderAPI_MakeEdge(anEllipseCurve).Shape()); Handle(AIS_ColoredShape) anAisRevolSurf = new AIS_ColoredShape( BRepBuilderAPI_MakeFace(aRevolSurf, Precision::Confusion()).Shape()); anAisEllipse->SetColor(Quantity_Color(Quantity_NOC_YELLOW)); anAisEllipse->SetWidth(2.5); anAisRevolSurf->SetColor(Quantity_Color(Quantity_NOC_RED)); myObject3d.Append(anAisEllipse); myObject3d.Append(anAisRevolSurf); } void GeometrySamples::TrimmedCurve2dSample() { // Create a closed circular curve. Handle(Geom2d_Circle) aGeomCircle = new Geom2d_Circle(gp_Ax2d(gp_Pnt2d(), gp_Vec2d(1.0, 0.0)), 5.0); Handle(AdaptorCurve2d_AIS) anAisCirc = new AdaptorCurve2d_AIS(aGeomCircle); myObject2d.Append(anAisCirc); // Cut off a quarter of the circle. Handle(Geom2d_TrimmedCurve) aCircQuater = new Geom2d_TrimmedCurve(aGeomCircle, 0.0, M_PI_2); aCircQuater->Translate(gp_Vec2d(15.0, 0.0)); Handle(AdaptorCurve2d_AIS) anAisCircQuater = new AdaptorCurve2d_AIS(aCircQuater); myObject2d.Append(anAisCircQuater); } void GeometrySamples::OffsetCurve2dSample() { Handle(Geom2d_Circle) aGeomCircle = new Geom2d_Circle(gp_Ax2d(gp_Pnt2d(), gp_Vec2d(1.0, 0.0)), 5.0); Standard_Real anExpandOffset = aGeomCircle->Radius() / 4.0; Handle(Geom2d_OffsetCurve) anExpandCircCurve = new Geom2d_OffsetCurve(aGeomCircle, anExpandOffset); Standard_Real anCollapseOffset = -aGeomCircle->Radius() / 2.0; Handle(Geom2d_OffsetCurve) anCollapseCircCurve = new Geom2d_OffsetCurve(aGeomCircle, anCollapseOffset); Handle(AdaptorCurve2d_AIS) anAisCirc = new AdaptorCurve2d_AIS(aGeomCircle); myObject2d.Append(anAisCirc); Handle(AdaptorCurve2d_AIS) anAisExpand = new AdaptorCurve2d_AIS(anExpandCircCurve); myObject2d.Append(anAisExpand); Handle(AdaptorCurve2d_AIS) anAisCollapse = new AdaptorCurve2d_AIS(anCollapseCircCurve); myObject2d.Append(anAisCollapse); } void GeometrySamples::BoundingBoxOfSurface3dSample() { // Define a 4x4 grid of points for BSpline surface. TColgp_Array2OfPnt aPoints(1, 4, 1, 4); for (Standard_Integer i = 1; i <= 4; ++i) { gp_Pnt aPnt; aPnt.SetX(5.0 * i); for (Standard_Integer j = 1; j <= 4; ++j) { aPnt.SetY(5.0 * j); if (1 < i && i < 4 && 1 < j && j < 4) { aPnt.SetZ(5.0); } else { aPnt.SetZ(0.0); } aPoints.SetValue(i, j, aPnt); } } // Make a BSpline surface from the points array. Handle(Geom_BSplineSurface) aBSplineSurf = GeomAPI_PointsToBSplineSurface(aPoints).Surface(); myResult << "Geom_BSplineSurface was created" << std::endl; // Compute BSpline surface bounding box. Bnd_Box aBndBox; BndLib_AddSurface::AddOptimal(GeomAdaptor_Surface(aBSplineSurf), Precision::Confusion(), aBndBox); myResult << "Bounding box:" << std::endl; myResult << " Min corner = [ " << aBndBox.CornerMin().X() << ", " << aBndBox.CornerMin().Y() << ", " << aBndBox.CornerMin().Z() << " ]" << std::endl; myResult << " Max corner = [ " << aBndBox.CornerMax().X() << ", " << aBndBox.CornerMax().Y() << ", " << aBndBox.CornerMax().Z() << " ]" << std::endl; Handle(AIS_ColoredShape) anAisBSplineSurf = new AIS_ColoredShape( BRepBuilderAPI_MakeFace(aBSplineSurf, Precision::Confusion()).Shape()); Handle(AIS_ColoredShape) anAisBndBox = new AIS_ColoredShape( BRepPrimAPI_MakeBox(aBndBox.CornerMin(), aBndBox.CornerMax()).Shell()); myObject3d.Append(anAisBSplineSurf); myObject3d.Append(anAisBndBox); myContext->SetDisplayMode(anAisBndBox, 0, Standard_True); } void GeometrySamples::BoundingBoxOfCurves3dSample() { // Define points. gp_Pnt aPnt1(0.0, 0.0, 10.0); gp_Pnt aPnt2(5.0, 5.0, 5.0); gp_Pnt aPnt3(10.0, 10.0, 15.0); gp_Pnt aPnt4(15.0, 5.0, 20.0); // Add points to the curve poles array. TColgp_Array1OfPnt aPoles(1, 4); aPoles.SetValue(1, aPnt1); aPoles.SetValue(2, aPnt2); aPoles.SetValue(3, aPnt3); aPoles.SetValue(4, aPnt4); // Make a BSpline curve from the points array. Handle(Geom_BSplineCurve) aBSplineCurve = GeomAPI_PointsToBSpline(aPoles).Curve(); myResult << "aBSplineCurve was created" << std::endl; // Compute BSpline curve bounding box. Bnd_Box aBndBox; BndLib_Add3dCurve::AddOptimal(GeomAdaptor_Curve(aBSplineCurve), Precision::Confusion(), aBndBox); myResult << "Bounding box:" << std::endl; myResult << " Min corner = [ " << aBndBox.CornerMin().X() << ", " << aBndBox.CornerMin().Y() << ", " << aBndBox.CornerMin().Z() << " ]" << std::endl; myResult << " Max corner = [ " << aBndBox.CornerMax().X() << ", " << aBndBox.CornerMax().Y() << ", " << aBndBox.CornerMax().Z() << " ]" << std::endl; Handle(AIS_ColoredShape) anAisBSplineCurve = new AIS_ColoredShape (BRepBuilderAPI_MakeEdge(aBSplineCurve).Shape()); Handle(AIS_ColoredShape) anAisBndBox = new AIS_ColoredShape (BRepPrimAPI_MakeBox(aBndBox.CornerMin(), aBndBox.CornerMax()).Shell()); myObject3d.Append(anAisBSplineCurve); myObject3d.Append(anAisBndBox); myContext->SetDisplayMode(anAisBndBox, 0, Standard_True); } void GeometrySamples::BoundingBoxOfCurves2dSample() { // Define points. gp_Pnt2d aPnt1(0.0, 0.0); gp_Pnt2d aPnt2(5.0, 5.0); gp_Pnt2d aPnt3(10.0, 10.0); gp_Pnt2d aPnt4(15.0, 5.0); // Add points to the curve poles array. TColgp_Array1OfPnt2d aPoles(1, 4); aPoles.SetValue(1, aPnt1); aPoles.SetValue(2, aPnt2); aPoles.SetValue(3, aPnt3); aPoles.SetValue(4, aPnt4); // Make a BSpline curve from the points array. Handle(Geom2d_BSplineCurve) aBSplineCurve = Geom2dAPI_PointsToBSpline(aPoles).Curve(); // Compute BSpline curve bounding box. Bnd_Box2d aBndBox; BndLib_Add2dCurve::AddOptimal(aBSplineCurve, 0.0, 1.0, Precision::PConfusion(), aBndBox); Standard_Real aXmin, aYmin, aXmax, aYmax; aBndBox.Get(aXmin, aYmin, aXmax, aYmax); myResult << "Bounding box:" << std::endl; myResult << " Min corner = [ " << aXmin << ", " << aYmin << " ]" << std::endl; myResult << " Max corner = [ " << aXmax << ", " << aYmax << " ]" << std::endl; Handle(AdaptorCurve2d_AIS) anAisBSpline = new AdaptorCurve2d_AIS(aBSplineCurve); Handle(AdaptorVec_AIS) anAisVec1 = new AdaptorVec_AIS(gp_Pnt2d(aXmin, aYmin), gp_Pnt2d(aXmin, aYmax)); Handle(AdaptorVec_AIS) anAisVec2 = new AdaptorVec_AIS(gp_Pnt2d(aXmin, aYmax), gp_Pnt2d(aXmax, aYmax)); Handle(AdaptorVec_AIS) anAisVec3 = new AdaptorVec_AIS(gp_Pnt2d(aXmax, aYmax), gp_Pnt2d(aXmax, aYmin)); Handle(AdaptorVec_AIS) anAisVec4 = new AdaptorVec_AIS(gp_Pnt2d(aXmax, aYmin), gp_Pnt2d(aXmin, aYmin)); myObject2d.Append(anAisBSpline); myObject2d.Append(anAisVec1); myObject2d.Append(anAisVec2); myObject2d.Append(anAisVec3); myObject2d.Append(anAisVec4); } void GeometrySamples::DumpCircleInfoSample() { // Define a circle placed in the origin of XY coordinate // plane and with the radius equal to 0.5. gp_Circ aCirc(gp::XOY(), 0.5); // Create a closed circular curve. Handle(Geom_Circle) aCircCurve = new Geom_Circle(aCirc); myResult << "Geom_Circle was created:" << std::endl; myResult << " Center = [ " << aCircCurve->Position().Location().X() << ", " << aCircCurve->Position().Location().Y() << ", " << aCircCurve->Position().Location().Z() << " ]" << std::endl; myResult << " Radius = " << aCircCurve->Radius() << std::endl; myResult << " Plane normal = [ " << aCircCurve->Position().Direction().X() << ", " << aCircCurve->Position().Direction().Y() << ", " << aCircCurve->Position().Direction().Z() << " ]" << std::endl; Handle(AIS_Circle) anAisCircle = new AIS_Circle(aCircCurve); Handle(AIS_TextLabel) anAisCenterLabel = new AIS_TextLabel(); anAisCenterLabel->SetText(" Center"); anAisCenterLabel->SetPosition(aCircCurve->Position().Location()); Handle(AIS_Point) anAisCenter = new AIS_Point(new Geom_CartesianPoint(aCirc.Location())); Handle(AIS_Axis) anAisAxis = new AIS_Axis(new Geom_Axis2Placement(aCircCurve->Position()), AIS_TOAX_ZAxis); myObject3d.Append(anAisCircle); myObject3d.Append(anAisCenterLabel); myObject3d.Append(anAisAxis); } void GeometrySamples::DumpBSplineCurveInfoSample() { // Define points. gp_Pnt aPnt1(0.0, 0.0, 10.0); gp_Pnt aPnt2(5.0, 5.0, 5.0); gp_Pnt aPnt3(10.0, 10.0, 15.0); gp_Pnt aPnt4(15.0, 5.0, 20.0); // Add points to the curve poles array. TColgp_Array1OfPnt aPoles(1, 4); aPoles.SetValue(1, aPnt1); aPoles.SetValue(2, aPnt2); aPoles.SetValue(3, aPnt3); aPoles.SetValue(4, aPnt4); // Make a BSpline curve from the points array Handle(Geom_BSplineCurve) aBSplineCurve = GeomAPI_PointsToBSpline(aPoles).Curve(); myResult << "aBSplineCurve was created:" << std::endl; myResult << " Degree = " << aBSplineCurve->Degree() << std::endl; myResult << " Parameter range = [ " << aBSplineCurve->FirstParameter() << ", " << aBSplineCurve->LastParameter() << " ]" << std::endl; NCollection_List aParams; aParams.Append(0.75 * aBSplineCurve->FirstParameter() + 0.25 * aBSplineCurve->LastParameter()); aParams.Append(0.50 * aBSplineCurve->FirstParameter() + 0.50 * aBSplineCurve->LastParameter()); aParams.Append(0.25 * aBSplineCurve->FirstParameter() + 0.75 * aBSplineCurve->LastParameter()); myResult << " Curve info:" << std::endl; for (NCollection_List::Iterator anIt(aParams); anIt.More(); anIt.Next()) { Standard_Real aParam = anIt.Value(); gp_Pnt aPnt; gp_Vec aVec; aBSplineCurve->D1(aParam, aPnt, aVec); myResult << " Param = " << aParam << std::endl; myResult << " P = [ " << aPnt.X() << ", " << aPnt.Y() << ", " << aPnt.Z() << " ]" << std::endl; myResult << " D = [ " << aVec.X() << ", " << aVec.Y() << ", " << aVec.Z() << " ]" << std::endl; myObject3d.Append(new AIS_Point(new Geom_CartesianPoint(aPnt))); Handle(AIS_TextLabel) anAisCenterLabel = new AIS_TextLabel(); Standard_SStream aSS; aSS << "P [" << aPnt.X() << ", " << aPnt.Y() << ", " << aPnt.Z() << "]" << std::endl; aSS << "D [" << aVec.X() << ", " << aVec.Y() << ", " << aVec.Z() << "]" << std::endl; anAisCenterLabel->SetText(aSS.str().c_str()); anAisCenterLabel->SetPosition(aPnt); myObject3d.Append(anAisCenterLabel); Handle(AIS_Axis) anAisD = new AIS_Axis(new Geom_Axis1Placement(gp_Ax1(aPnt, aVec))); myObject3d.Append(anAisD); } Handle(AIS_ColoredShape) anAisBSplineCurve = new AIS_ColoredShape (BRepBuilderAPI_MakeEdge(aBSplineCurve).Shape()); anAisBSplineCurve->SetColor(Quantity_Color(Quantity_NOC_RED)); myObject3d.Append(anAisBSplineCurve); }