// Copyright (c) 1995-1999 Matra Datavision // Copyright (c) 1999-2014 OPEN CASCADE SAS // // This file is part of Open CASCADE Technology software library. // // This library is free software; you can redistribute it and/or modify it under // the terms of the GNU Lesser General Public License version 2.1 as published // by the Free Software Foundation, with special exception defined in the file // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT // distribution for complete text of the license and disclaimer of any warranty. // // Alternatively, this file may be used under the terms of Open CASCADE // commercial license or contractual agreement. #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include //================================================================================================= static Handle(Geom_BSplineCurve) BSplineCurveBuilder(const Handle(Geom_Conic)& TheConic, const Convert_ConicToBSplineCurve& Convert) { Handle(Geom_BSplineCurve) TheCurve; Standard_Integer NbPoles = Convert.NbPoles(); Standard_Integer NbKnots = Convert.NbKnots(); TColgp_Array1OfPnt Poles(1, NbPoles); TColStd_Array1OfReal Weights(1, NbPoles); TColStd_Array1OfReal Knots(1, NbKnots); TColStd_Array1OfInteger Mults(1, NbKnots); Standard_Integer i; gp_Pnt2d P2d; gp_Pnt P3d; for (i = 1; i <= NbPoles; i++) { P2d = Convert.Pole(i); P3d.SetCoord(P2d.X(), P2d.Y(), 0.0); Poles(i) = P3d; Weights(i) = Convert.Weight(i); } for (i = 1; i <= NbKnots; i++) { Knots(i) = Convert.Knot(i); Mults(i) = Convert.Multiplicity(i); } TheCurve = new Geom_BSplineCurve(Poles, Weights, Knots, Mults, Convert.Degree(), Convert.IsPeriodic()); gp_Trsf T; T.SetTransformation(TheConic->Position(), gp::XOY()); Handle(Geom_BSplineCurve) Cres; Cres = Handle(Geom_BSplineCurve)::DownCast(TheCurve->Transformed(T)); return Cres; } //================================================================================================= Handle(Geom_BSplineCurve) GeomConvert::SplitBSplineCurve(const Handle(Geom_BSplineCurve)& C, const Standard_Integer FromK1, const Standard_Integer ToK2, const Standard_Boolean SameOrientation) { Standard_Integer TheFirst = C->FirstUKnotIndex(); Standard_Integer TheLast = C->LastUKnotIndex(); if (FromK1 == ToK2) throw Standard_DomainError(); Standard_Integer FirstK = Min(FromK1, ToK2); Standard_Integer LastK = Max(FromK1, ToK2); if (FirstK < TheFirst || LastK > TheLast) throw Standard_DomainError(); Handle(Geom_BSplineCurve) C1 = Handle(Geom_BSplineCurve)::DownCast(C->Copy()); C1->Segment(C->Knot(FirstK), C->Knot(LastK)); if (C->IsPeriodic()) { if (!SameOrientation) C1->Reverse(); } else { if (FromK1 > ToK2) C1->Reverse(); } return C1; } //================================================================================================= Handle(Geom_BSplineCurve) GeomConvert::SplitBSplineCurve( const Handle(Geom_BSplineCurve)& C, const Standard_Real FromU1, const Standard_Real ToU2, const Standard_Real, // ParametricTolerance, const Standard_Boolean SameOrientation) { Standard_Real FirstU = Min(FromU1, ToU2); Standard_Real LastU = Max(FromU1, ToU2); Handle(Geom_BSplineCurve) C1 = Handle(Geom_BSplineCurve)::DownCast(C->Copy()); C1->Segment(FirstU, LastU); if (C->IsPeriodic()) { if (!SameOrientation) C1->Reverse(); } else { if (FromU1 > ToU2) C1->Reverse(); } return C1; } //================================================================================================= Handle(Geom_BSplineCurve) GeomConvert::CurveToBSplineCurve( const Handle(Geom_Curve)& C, const Convert_ParameterisationType Parameterisation) { Handle(Geom_BSplineCurve) TheCurve; if (C->IsKind(STANDARD_TYPE(Geom_TrimmedCurve))) { Handle(Geom_Curve) Curv; Handle(Geom_TrimmedCurve) Ctrim = Handle(Geom_TrimmedCurve)::DownCast(C); Curv = Ctrim->BasisCurve(); Standard_Real U1 = Ctrim->FirstParameter(); Standard_Real U2 = Ctrim->LastParameter(); // Si la courbe n'est pas vraiment restreinte, on ne risque pas // le Raise dans le BS->Segment. if (!Curv->IsPeriodic()) { if (U1 < Curv->FirstParameter()) U1 = Curv->FirstParameter(); if (U2 > Curv->LastParameter()) U2 = Curv->LastParameter(); } if (Curv->IsKind(STANDARD_TYPE(Geom_Line))) { gp_Pnt Pdeb = Ctrim->StartPoint(); gp_Pnt Pfin = Ctrim->EndPoint(); TColgp_Array1OfPnt Poles(1, 2); Poles(1) = Pdeb; Poles(2) = Pfin; TColStd_Array1OfReal Knots(1, 2); Knots(1) = Ctrim->FirstParameter(); Knots(2) = Ctrim->LastParameter(); TColStd_Array1OfInteger Mults(1, 2); Mults(1) = 2; Mults(2) = 2; Standard_Integer Degree = 1; TheCurve = new Geom_BSplineCurve(Poles, Knots, Mults, Degree); } else if (Curv->IsKind(STANDARD_TYPE(Geom_Circle))) { Handle(Geom_Circle) TheConic = Handle(Geom_Circle)::DownCast(Curv); gp_Circ2d C2d(gp::OX2d(), TheConic->Radius()); if (Parameterisation != Convert_RationalC1) { Convert_CircleToBSplineCurve Convert(C2d, U1, U2, Parameterisation); TheCurve = BSplineCurveBuilder(TheConic, Convert); } else { if (U2 - U1 < 6.) { Convert_CircleToBSplineCurve Convert(C2d, U1, U2, Parameterisation); TheCurve = BSplineCurveBuilder(TheConic, Convert); } else { // split circle to avoide numerical // overflow when U2 - U1 =~ 2*PI Standard_Real Umed = (U1 + U2) * .5; Convert_CircleToBSplineCurve Convert1(C2d, U1, Umed, Parameterisation); Handle(Geom_BSplineCurve) TheCurve1 = BSplineCurveBuilder(TheConic, Convert1); Convert_CircleToBSplineCurve Convert2(C2d, Umed, U2, Parameterisation); Handle(Geom_BSplineCurve) TheCurve2 = BSplineCurveBuilder(TheConic, Convert2); GeomConvert_CompCurveToBSplineCurve CCTBSpl(TheCurve1, Parameterisation); CCTBSpl.Add(TheCurve2, Precision::PConfusion(), Standard_True); TheCurve = CCTBSpl.BSplineCurve(); } } } else if (Curv->IsKind(STANDARD_TYPE(Geom_Ellipse))) { Handle(Geom_Ellipse) TheConic = Handle(Geom_Ellipse)::DownCast(Curv); gp_Elips2d E2d(gp::OX2d(), TheConic->MajorRadius(), TheConic->MinorRadius()); if (Parameterisation != Convert_RationalC1) { Convert_EllipseToBSplineCurve Convert(E2d, U1, U2, Parameterisation); TheCurve = BSplineCurveBuilder(TheConic, Convert); } else { if (U2 - U1 < 6.) { Convert_EllipseToBSplineCurve Convert(E2d, U1, U2, Parameterisation); TheCurve = BSplineCurveBuilder(TheConic, Convert); } else { // split ellipse to avoide numerical // overflow when U2 - U1 =~ 2*PI Standard_Real Umed = (U1 + U2) * .5; Convert_EllipseToBSplineCurve Convert1(E2d, U1, Umed, Parameterisation); Handle(Geom_BSplineCurve) TheCurve1 = BSplineCurveBuilder(TheConic, Convert1); Convert_EllipseToBSplineCurve Convert2(E2d, Umed, U2, Parameterisation); Handle(Geom_BSplineCurve) TheCurve2 = BSplineCurveBuilder(TheConic, Convert2); GeomConvert_CompCurveToBSplineCurve CCTBSpl(TheCurve1, Parameterisation); CCTBSpl.Add(TheCurve2, Precision::PConfusion(), Standard_True); TheCurve = CCTBSpl.BSplineCurve(); } } } else if (Curv->IsKind(STANDARD_TYPE(Geom_Hyperbola))) { Handle(Geom_Hyperbola) TheConic = Handle(Geom_Hyperbola)::DownCast(Curv); gp_Hypr2d H2d(gp::OX2d(), TheConic->MajorRadius(), TheConic->MinorRadius()); Convert_HyperbolaToBSplineCurve Convert(H2d, U1, U2); TheCurve = BSplineCurveBuilder(TheConic, Convert); } else if (Curv->IsKind(STANDARD_TYPE(Geom_Parabola))) { Handle(Geom_Parabola) TheConic = Handle(Geom_Parabola)::DownCast(Curv); gp_Parab2d Prb2d(gp::OX2d(), TheConic->Focal()); Convert_ParabolaToBSplineCurve Convert(Prb2d, U1, U2); TheCurve = BSplineCurveBuilder(TheConic, Convert); } else if (Curv->IsKind(STANDARD_TYPE(Geom_BezierCurve))) { Handle(Geom_BezierCurve) CBez = Handle(Geom_BezierCurve)::DownCast(Curv->Copy()); CBez->Segment(U1, U2); Standard_Integer NbPoles = CBez->NbPoles(); Standard_Integer Degree = CBez->Degree(); TColgp_Array1OfPnt Poles(1, NbPoles); TColStd_Array1OfReal Knots(1, 2); TColStd_Array1OfInteger Mults(1, 2); Knots(1) = 0.0; Knots(2) = 1.0; Mults(1) = Degree + 1; Mults(2) = Degree + 1; CBez->Poles(Poles); if (CBez->IsRational()) { TColStd_Array1OfReal Weights(1, NbPoles); CBez->Weights(Weights); TheCurve = new Geom_BSplineCurve(Poles, Weights, Knots, Mults, Degree); } else { TheCurve = new Geom_BSplineCurve(Poles, Knots, Mults, Degree); } } else if (Curv->IsKind(STANDARD_TYPE(Geom_BSplineCurve))) { TheCurve = Handle(Geom_BSplineCurve)::DownCast(Curv->Copy()); //// modified by jgv, 14.01.05 for OCC7355 //// if (TheCurve->IsPeriodic()) { Standard_Real Uf = TheCurve->FirstParameter(); Standard_Real Ul = TheCurve->LastParameter(); ElCLib::AdjustPeriodic(Uf, Ul, Precision::Confusion(), U1, U2); if (Abs(U1 - Uf) <= Precision::Confusion() && Abs(U2 - Ul) <= Precision::Confusion()) TheCurve->SetNotPeriodic(); } /////////////////////////////////////////////// TheCurve->Segment(U1, U2); } else if (Curv->IsKind(STANDARD_TYPE(Geom_OffsetCurve))) { Standard_Real Tol3d = 1.e-4; GeomAbs_Shape Order = GeomAbs_C2; Standard_Integer MaxSegments = 16, MaxDegree = 14; GeomConvert_ApproxCurve ApprCOffs(C, Tol3d, Order, MaxSegments, MaxDegree); if (ApprCOffs.HasResult()) TheCurve = ApprCOffs.Curve(); else throw Standard_ConstructionError(); } else { throw Standard_DomainError("No such curve"); } } else { if (C->IsKind(STANDARD_TYPE(Geom_Ellipse))) { Handle(Geom_Ellipse) TheConic = Handle(Geom_Ellipse)::DownCast(C); gp_Elips2d E2d(gp::OX2d(), TheConic->MajorRadius(), TheConic->MinorRadius()); /* if (Parameterisation == Convert_TgtThetaOver2_1 || Parameterisation == Convert_TgtThetaOver2_2) { throw Standard_DomainError(); } else if ( Parameterisation == Convert_QuasiAngular) { Convert_EllipseToBSplineCurve Convert (E2d, 0.0e0, 2.0e0 * M_PI, Parameterisation); TheCurve = BSplineCurveBuilder (TheConic, Convert); TheCurve->SetPeriodic(); } else {*/ Convert_EllipseToBSplineCurve Convert(E2d, Parameterisation); TheCurve = BSplineCurveBuilder(TheConic, Convert); TheCurve->SetPeriodic(); // pour polynomial et quasi angular // } } else if (C->IsKind(STANDARD_TYPE(Geom_Circle))) { Handle(Geom_Circle) TheConic = Handle(Geom_Circle)::DownCast(C); gp_Circ2d C2d(gp::OX2d(), TheConic->Radius()); /* if (Parameterisation == Convert_TgtThetaOver2_1 || Parameterisation == Convert_TgtThetaOver2_2) { throw Standard_DomainError(); } else if ( Parameterisation == Convert_QuasiAngular) { Convert_CircleToBSplineCurve Convert (C2d, 0.0e0, 2.0e0 * M_PI, Parameterisation); TheCurve = BSplineCurveBuilder (TheConic, Convert); } else {*/ Convert_CircleToBSplineCurve Convert(C2d, Parameterisation); TheCurve = BSplineCurveBuilder(TheConic, Convert); TheCurve->SetPeriodic(); // } } else if (C->IsKind(STANDARD_TYPE(Geom_BezierCurve))) { Handle(Geom_BezierCurve) CBez = Handle(Geom_BezierCurve)::DownCast(C); Standard_Integer NbPoles = CBez->NbPoles(); Standard_Integer Degree = CBez->Degree(); TColgp_Array1OfPnt Poles(1, NbPoles); TColStd_Array1OfReal Knots(1, 2); TColStd_Array1OfInteger Mults(1, 2); Knots(1) = 0.0; Knots(2) = 1.0; Mults(1) = Degree + 1; Mults(2) = Degree + 1; CBez->Poles(Poles); if (CBez->IsRational()) { TColStd_Array1OfReal Weights(1, NbPoles); CBez->Weights(Weights); TheCurve = new Geom_BSplineCurve(Poles, Weights, Knots, Mults, Degree); } else { TheCurve = new Geom_BSplineCurve(Poles, Knots, Mults, Degree); } } else if (C->IsKind(STANDARD_TYPE(Geom_BSplineCurve))) { TheCurve = Handle(Geom_BSplineCurve)::DownCast(C->Copy()); } else if (C->IsKind(STANDARD_TYPE(Geom_OffsetCurve))) { Standard_Real Tol3d = 1.e-4; GeomAbs_Shape Order = GeomAbs_C2; Standard_Integer MaxSegments = 16, MaxDegree = 14; GeomConvert_ApproxCurve ApprCOffs(C, Tol3d, Order, MaxSegments, MaxDegree); if (ApprCOffs.HasResult()) TheCurve = ApprCOffs.Curve(); else throw Standard_ConstructionError(); } else { throw Standard_DomainError("No such curve"); } } return TheCurve; } //======================================================================= // class : law_evaluator // purpose : useful to estimate the value of a function //======================================================================= class GeomConvert_law_evaluator : public BSplCLib_EvaluatorFunction { public: GeomConvert_law_evaluator(const Handle(Geom2d_BSplineCurve)& theAncore) : myAncore(theAncore) { } virtual void Evaluate(const Standard_Integer theDerivativeRequest, const Standard_Real* theStartEnd, const Standard_Real theParameter, Standard_Real& theResult, Standard_Integer& theErrorCode) const { theErrorCode = 0; if (!myAncore.IsNull() && theParameter >= theStartEnd[0] && theParameter <= theStartEnd[1] && theDerivativeRequest == 0) { gp_Pnt2d aPoint; myAncore->D0(theParameter, aPoint); theResult = aPoint.Coord(2); } else theErrorCode = 1; } private: Handle(Geom2d_BSplineCurve) myAncore; }; //======================================================================= // function : MultNumandDenom // purpose : Multiply two BSpline curves to make one //======================================================================= static Handle(Geom_BSplineCurve) MultNumandDenom(const Handle(Geom2d_BSplineCurve)& a, const Handle(Geom_BSplineCurve)& BS) { TColStd_Array1OfReal aKnots(1, a->NbKnots()); TColStd_Array1OfReal BSKnots(1, BS->NbKnots()); TColStd_Array1OfReal BSFlatKnots(1, BS->NbPoles() + BS->Degree() + 1); TColStd_Array1OfReal BSWeights(1, BS->NbPoles()); TColStd_Array1OfInteger aMults(1, a->NbKnots()); TColStd_Array1OfInteger BSMults(1, BS->NbKnots()); TColgp_Array1OfPnt2d aPoles(1, a->NbPoles()); TColgp_Array1OfPnt BSPoles(1, BS->NbPoles()); Handle(Geom_BSplineCurve) res; Handle(TColStd_HArray1OfReal) resKnots; Handle(TColStd_HArray1OfInteger) resMults; Standard_Real start_value, end_value; Standard_Real tolerance = Precision::PConfusion(); Standard_Integer resNbPoles, degree, ii, jj, aStatus; BS->Knots(BSKnots); // storage of the two BSpline BS->Multiplicities(BSMults); // features BS->Poles(BSPoles); BS->Weights(BSWeights); BS->KnotSequence(BSFlatKnots); start_value = BSKnots(1); end_value = BSKnots(BS->NbKnots()); if ((end_value - start_value) / 5 < tolerance) tolerance = (end_value - start_value) / 5; a->Knots(aKnots); a->Poles(aPoles); a->Multiplicities(aMults); BSplCLib::Reparametrize(BS->FirstParameter(), BS->LastParameter(), aKnots); Handle(Geom2d_BSplineCurve) anAncore = new Geom2d_BSplineCurve(aPoles, aKnots, aMults, a->Degree()); BSplCLib::MergeBSplineKnots(tolerance, start_value, end_value, // merge of the knots a->Degree(), aKnots, aMults, BS->Degree(), BSKnots, BSMults, resNbPoles, resKnots, resMults); degree = BS->Degree() + a->Degree(); TColgp_Array1OfPnt resNumPoles(1, resNbPoles); TColStd_Array1OfReal resDenPoles(1, resNbPoles); TColgp_Array1OfPnt resPoles(1, resNbPoles); TColStd_Array1OfReal resFlatKnots(1, resNbPoles + degree + 1); BSplCLib::KnotSequence(resKnots->Array1(), resMults->Array1(), resFlatKnots); for (ii = 1; ii <= BS->NbPoles(); ii++) for (jj = 1; jj <= 3; jj++) BSPoles(ii).SetCoord(jj, BSPoles(ii).Coord(jj) * BSWeights(ii)); // POP pour WNT GeomConvert_law_evaluator ev(anAncore); BSplCLib::FunctionMultiply(ev, BS->Degree(), BSFlatKnots, BSPoles, resFlatKnots, degree, resNumPoles, aStatus); BSplCLib::FunctionMultiply(ev, BS->Degree(), BSFlatKnots, BSWeights, resFlatKnots, degree, resDenPoles, aStatus); for (ii = 1; ii <= resNbPoles; ii++) for (jj = 1; jj <= 3; jj++) resPoles(ii).SetCoord(jj, resNumPoles(ii).Coord(jj) / resDenPoles(ii)); res = new Geom_BSplineCurve(resPoles, resDenPoles, resKnots->Array1(), resMults->Array1(), degree); return res; } //======================================================================= // function : Pretreatment // purpose : Put the two first and two last weights at one if they are // equal //======================================================================= static void Pretreatment(TColGeom_Array1OfBSplineCurve& tab) { Standard_Integer i, j; Standard_Real a; for (i = 0; i <= (tab.Length() - 1); i++) { if (tab(i)->IsRational()) { a = tab(i)->Weight(1); if ((tab(i)->Weight(2) == a) && (tab(i)->Weight(tab(i)->NbPoles() - 1) == a) && (tab(i)->Weight(tab(i)->NbPoles()) == a)) for (j = 1; j <= tab(i)->NbPoles(); j++) tab(i)->SetWeight(j, tab(i)->Weight(j) / a); } } } //======================================================================= // function : NeedToBeTreated // purpose : Say if the BSpline is rational and if the two first and two // last weights are different //======================================================================= static Standard_Boolean NeedToBeTreated(const Handle(Geom_BSplineCurve)& BS) { TColStd_Array1OfReal tabWeights(1, BS->NbPoles()); if (BS->IsRational()) { BS->Weights(tabWeights); if ((BSplCLib::IsRational(tabWeights, 1, BS->NbPoles())) && ((BS->Weight(1) < (1 - Precision::Confusion())) || (BS->Weight(1) > (1 + Precision::Confusion())) || (BS->Weight(2) < (1 - Precision::Confusion())) || (BS->Weight(2) > (1 + Precision::Confusion())) || (BS->Weight(BS->NbPoles() - 1) < (1 - Precision::Confusion())) || (BS->Weight(BS->NbPoles() - 1) > (1 + Precision::Confusion())) || (BS->Weight(BS->NbPoles()) < (1 - Precision::Confusion())) || (BS->Weight(BS->NbPoles()) > (1 + Precision::Confusion())))) return Standard_True; else return Standard_False; } else return Standard_False; } //======================================================================= // function : Need2DegRepara // purpose : in the case of wire closed G1 it says if you will to use a // two degree reparametrisation to close it C1 //======================================================================= static Standard_Boolean Need2DegRepara(const TColGeom_Array1OfBSplineCurve& tab) { Standard_Integer i; gp_Vec Vec1, Vec2; gp_Pnt Pint; Standard_Real Rapport = 1.0e0; for (i = 0; i <= tab.Length() - 2; i++) { tab(i + 1)->D1(tab(i + 1)->FirstParameter(), Pint, Vec1); tab(i)->D1(tab(i)->LastParameter(), Pint, Vec2); Rapport = Rapport * Vec2.Magnitude() / Vec1.Magnitude(); } if ((Rapport <= (1.0e0 + Precision::Confusion())) && (Rapport >= (1.0e0 - Precision::Confusion()))) return Standard_False; else return Standard_True; } //======================================================================= // function : Indexmin // purpose : Give the index of the curve which has the lowest degree //======================================================================= static Standard_Integer Indexmin(const TColGeom_Array1OfBSplineCurve& tab) { Standard_Integer i = 0, index = 0, degree = 0; degree = tab(0)->Degree(); for (i = 0; i <= tab.Length() - 1; i++) if (tab(i)->Degree() <= degree) { degree = tab(i)->Degree(); index = i; } return index; } //======================================================================= // function : NewTabClosedG1 // purpose : Sort the array of BSplines to start at the nb_vertex_group0 index //======================================================================= static void ReorderArrayOfG1Curves(TColGeom_Array1OfBSplineCurve& ArrayOfCurves, TColStd_Array1OfReal& ArrayOfToler, TColStd_Array1OfBoolean& tabG1, const Standard_Integer StartIndex, const Standard_Real ClosedTolerance) { Standard_Integer i; TColGeom_Array1OfBSplineCurve ArraybisOfCurves(0, ArrayOfCurves.Length() - 1); // temporary TColStd_Array1OfReal ArraybisOfToler(0, ArrayOfToler.Length() - 1); // arrays TColStd_Array1OfBoolean tabbisG1(0, tabG1.Length() - 1); for (i = 0; i <= ArrayOfCurves.Length() - 1; i++) { if (i != ArrayOfCurves.Length() - 1) { ArraybisOfCurves(i) = ArrayOfCurves(i); ArraybisOfToler(i) = ArrayOfToler(i); tabbisG1(i) = tabG1(i); } else ArraybisOfCurves(i) = ArrayOfCurves(i); } for (i = 0; i <= (ArrayOfCurves.Length() - (StartIndex + 2)); i++) { ArrayOfCurves(i) = ArraybisOfCurves(i + StartIndex + 1); if (i != (ArrayOfCurves.Length() - (StartIndex + 2))) { ArrayOfToler(i) = ArraybisOfToler(i + StartIndex + 1); tabG1(i) = tabbisG1(i + StartIndex + 1); } } ArrayOfToler(ArrayOfCurves.Length() - (StartIndex + 2)) = ClosedTolerance; tabG1(ArrayOfCurves.Length() - (StartIndex + 2)) = Standard_True; for (i = (ArrayOfCurves.Length() - (StartIndex + 1)); i <= (ArrayOfCurves.Length() - 1); i++) { if (i != ArrayOfCurves.Length() - 1) { ArrayOfCurves(i) = ArraybisOfCurves(i - (ArrayOfCurves.Length() - (StartIndex + 1))); ArrayOfToler(i) = ArraybisOfToler(i - (ArrayOfCurves.Length() - (StartIndex + 1))); tabG1(i) = tabbisG1(i - (ArrayOfCurves.Length() - (StartIndex + 1))); } else ArrayOfCurves(i) = ArraybisOfCurves(i - (ArrayOfCurves.Length() - (StartIndex + 1))); } } //================================================================================================= class GeomConvert_reparameterise_evaluator : public BSplCLib_EvaluatorFunction { public: GeomConvert_reparameterise_evaluator(const Standard_Real thePolynomialCoefficient[3]) { memcpy(myPolynomialCoefficient, thePolynomialCoefficient, sizeof(myPolynomialCoefficient)); } virtual void Evaluate(const Standard_Integer theDerivativeRequest, const Standard_Real* /*theStartEnd*/, const Standard_Real theParameter, Standard_Real& theResult, Standard_Integer& theErrorCode) const { theErrorCode = 0; PLib::EvalPolynomial( theParameter, theDerivativeRequest, 2, 1, *(( Standard_Real*)myPolynomialCoefficient), // function really only read values from this array theResult); } private: Standard_Real myPolynomialCoefficient[3]; }; //================================================================================================= void GeomConvert::ConcatG1(TColGeom_Array1OfBSplineCurve& ArrayOfCurves, const TColStd_Array1OfReal& ArrayOfToler, Handle(TColGeom_HArray1OfBSplineCurve)& ArrayOfConcatenated, Standard_Boolean& ClosedG1Flag, const Standard_Real ClosedTolerance) { Standard_Integer nb_curve = ArrayOfCurves.Length(), nb_vertexG1 = 0, nb_group = 0, index = 0, i, ii, j, jj, indexmin, nb_vertex_group0 = 0; Standard_Real lambda, // G1 coefficient First; Standard_Real PreLast = 0.; GeomAbs_Shape Cont; gp_Vec Vec1, Vec2; // consecutive tangential vectors gp_Pnt Pint; Handle(Geom_BSplineCurve) Curve1, Curve2; // clang-format off TColStd_Array1OfBoolean tabG1(0,nb_curve-2); //array of the G1 continuity at the intersections // clang-format on TColStd_Array1OfReal local_tolerance(0, ArrayOfToler.Length() - 1); for (i = 0; i < ArrayOfToler.Length(); i++) { local_tolerance(i) = ArrayOfToler(i); } for (i = 0; i < nb_curve; i++) { if (i >= 1) { First = ArrayOfCurves(i)->FirstParameter(); Cont = GeomLProp::Continuity(ArrayOfCurves(i - 1), ArrayOfCurves(i), PreLast, First, Standard_True, Standard_True); if (Cont < GeomAbs_C0) throw Standard_ConstructionError("GeomConvert curves not C0"); else { if (Cont >= GeomAbs_G1) tabG1(i - 1) = Standard_True; // True=G1 continuity else tabG1(i - 1) = Standard_False; } } PreLast = ArrayOfCurves(i)->LastParameter(); } while (index <= nb_curve - 1) { // determination of the Wire features nb_vertexG1 = 0; while (((index + nb_vertexG1) <= nb_curve - 2) && (tabG1(index + nb_vertexG1) == Standard_True)) nb_vertexG1++; nb_group++; if (index == 0) nb_vertex_group0 = nb_vertexG1; index = index + 1 + nb_vertexG1; } if ((ClosedG1Flag) && (nb_group != 1)) { // sort of the array nb_group--; ReorderArrayOfG1Curves(ArrayOfCurves, local_tolerance, tabG1, nb_vertex_group0, ClosedTolerance); } ArrayOfConcatenated = new TColGeom_HArray1OfBSplineCurve(0, nb_group - 1); Standard_Boolean fusion; index = 0; Pretreatment(ArrayOfCurves); Standard_Real aPolynomialCoefficient[3]; Standard_Boolean NeedDoubleDegRepara = Need2DegRepara(ArrayOfCurves); if (nb_group == 1 && ClosedG1Flag && NeedDoubleDegRepara) { Curve1 = ArrayOfCurves(nb_curve - 1); if (Curve1->Degree() > Geom2d_BSplineCurve::MaxDegree() / 2) ClosedG1Flag = Standard_False; } if ((nb_group == 1) && (ClosedG1Flag)) { // treatment of a particular case indexmin = Indexmin(ArrayOfCurves); if (indexmin != (ArrayOfCurves.Length() - 1)) ReorderArrayOfG1Curves(ArrayOfCurves, local_tolerance, tabG1, indexmin, ClosedTolerance); Curve2 = ArrayOfCurves(0); for (j = 1; j <= nb_curve - 1; j++) { // secondary loop inside each group Curve1 = ArrayOfCurves(j); if ((j == (nb_curve - 1)) && (NeedDoubleDegRepara)) { Curve2->D1(Curve2->LastParameter(), Pint, Vec1); Curve1->D1(Curve1->FirstParameter(), Pint, Vec2); lambda = Vec2.Magnitude() / Vec1.Magnitude(); TColStd_Array1OfReal KnotC1(1, Curve1->NbKnots()); Curve1->Knots(KnotC1); Curve1->D1(Curve1->LastParameter(), Pint, Vec2); ArrayOfCurves(0)->D1(ArrayOfCurves(0)->FirstParameter(), Pint, Vec1); Standard_Real lambda2 = Vec1.Magnitude() / Vec2.Magnitude(); Standard_Real tmax, a, b, c, umin = Curve1->FirstParameter(), umax = Curve1->LastParameter(); tmax = 2 * lambda * (umax - umin) / (1 + lambda * lambda2); a = (lambda * lambda2 - 1) / (2 * lambda * tmax); aPolynomialCoefficient[2] = a; b = (1 / lambda); aPolynomialCoefficient[1] = b; c = umin; aPolynomialCoefficient[0] = c; TColStd_Array1OfReal Curve1FlatKnots(1, Curve1->NbPoles() + Curve1->Degree() + 1); TColStd_Array1OfInteger KnotC1Mults(1, Curve1->NbKnots()); Curve1->Multiplicities(KnotC1Mults); BSplCLib::KnotSequence(KnotC1, KnotC1Mults, Curve1FlatKnots); KnotC1(1) = 0.0; for (ii = 2; ii <= KnotC1.Length(); ii++) { // KnotC1(ii)=(-b+Abs(a)/a*Sqrt(b*b-4*a*(c-KnotC1(ii))))/(2*a); KnotC1(ii) = (-b + Sqrt(b * b - 4 * a * (c - KnotC1(ii)))) / (2 * a); // ifv 17.05.00 buc60667 } TColgp_Array1OfPnt Curve1Poles(1, Curve1->NbPoles()); Curve1->Poles(Curve1Poles); for (ii = 1; ii <= Curve1->NbKnots(); ii++) KnotC1Mults(ii) = (Curve1->Degree() + KnotC1Mults(ii)); TColStd_Array1OfReal FlatKnots(1, Curve1FlatKnots.Length() + (Curve1->Degree() * Curve1->NbKnots())); BSplCLib::KnotSequence(KnotC1, KnotC1Mults, FlatKnots); TColgp_Array1OfPnt NewPoles(1, FlatKnots.Length() - (2 * Curve1->Degree() + 1)); Standard_Integer aStatus; TColStd_Array1OfReal Curve1Weights(1, Curve1->NbPoles()); Curve1->Weights(Curve1Weights); for (ii = 1; ii <= Curve1->NbPoles(); ii++) for (jj = 1; jj <= 3; jj++) Curve1Poles(ii).SetCoord(jj, Curve1Poles(ii).Coord(jj) * Curve1Weights(ii)); // POP pour WNT GeomConvert_reparameterise_evaluator ev(aPolynomialCoefficient); // BSplCLib::FunctionReparameterise(reparameterise_evaluator, BSplCLib::FunctionReparameterise(ev, Curve1->Degree(), Curve1FlatKnots, Curve1Poles, FlatKnots, 2 * Curve1->Degree(), NewPoles, aStatus); TColStd_Array1OfReal NewWeights(1, FlatKnots.Length() - (2 * Curve1->Degree() + 1)); // BSplCLib::FunctionReparameterise(reparameterise_evaluator, BSplCLib::FunctionReparameterise(ev, Curve1->Degree(), Curve1FlatKnots, Curve1Weights, FlatKnots, 2 * Curve1->Degree(), NewWeights, aStatus); for (ii = 1; ii <= NewPoles.Length(); ii++) for (jj = 1; jj <= 3; jj++) NewPoles(ii).SetCoord(jj, NewPoles(ii).Coord(jj) / NewWeights(ii)); Curve1 = new Geom_BSplineCurve(NewPoles, NewWeights, KnotC1, KnotC1Mults, 2 * Curve1->Degree()); } GeomConvert_CompCurveToBSplineCurve C(Curve2); fusion = C.Add(Curve1, local_tolerance(j - 1)); // merge of two consecutive curves if (fusion == Standard_False) throw Standard_ConstructionError("GeomConvert Concatenation Error"); Curve2 = C.BSplineCurve(); } Curve2->SetPeriodic(); Curve2->RemoveKnot(Curve2->LastUKnotIndex(), Curve2->Multiplicity(Curve2->LastUKnotIndex()) - 1, Precision::Confusion()); ArrayOfConcatenated->SetValue(0, Curve2); } else // clang-format off for (i=0;i<=nb_group-1;i++){ //principal loop on each G1 continuity // clang-format on nb_vertexG1 = 0; // group while (((index + nb_vertexG1) <= nb_curve - 2) && (tabG1(index + nb_vertexG1) == Standard_True)) nb_vertexG1++; for (j = index; j <= index + nb_vertexG1; j++) { // secondary loop inside each group Curve1 = ArrayOfCurves(j); if (index == j) // initialisation at the beginning of the loop ArrayOfConcatenated->SetValue(i, Curve1); else { GeomConvert_CompCurveToBSplineCurve C(ArrayOfConcatenated->Value(i)); // clang-format off fusion=C.Add(Curve1,ArrayOfToler(j-1)); //merge of two consecutive curves // clang-format on if (fusion == Standard_False) throw Standard_ConstructionError("GeomConvert Concatenation Error"); ArrayOfConcatenated->SetValue(i, C.BSplineCurve()); } } index = index + 1 + nb_vertexG1; } } //================================================================================================= void GeomConvert::ConcatC1(TColGeom_Array1OfBSplineCurve& ArrayOfCurves, const TColStd_Array1OfReal& ArrayOfToler, Handle(TColStd_HArray1OfInteger)& ArrayOfIndices, Handle(TColGeom_HArray1OfBSplineCurve)& ArrayOfConcatenated, Standard_Boolean& ClosedG1Flag, const Standard_Real ClosedTolerance) { ConcatC1(ArrayOfCurves, ArrayOfToler, ArrayOfIndices, ArrayOfConcatenated, ClosedG1Flag, ClosedTolerance, Precision::Angular()); } //================================================================================================= void GeomConvert::ConcatC1(TColGeom_Array1OfBSplineCurve& ArrayOfCurves, const TColStd_Array1OfReal& ArrayOfToler, Handle(TColStd_HArray1OfInteger)& ArrayOfIndices, Handle(TColGeom_HArray1OfBSplineCurve)& ArrayOfConcatenated, Standard_Boolean& ClosedG1Flag, const Standard_Real ClosedTolerance, const Standard_Real AngularTolerance) { Standard_Integer nb_curve = ArrayOfCurves.Length(), nb_vertexG1, nb_group = 0, index = 0, i, ii, j, jj, indexmin, nb_vertex_group0 = 0; Standard_Real lambda, // G1 coefficient First; Standard_Real PreLast = 0.; GeomAbs_Shape Cont; gp_Vec Vec1, Vec2; // consecutive tangential vectors gp_Pnt Pint; Handle(Geom_BSplineCurve) Curve1, Curve2; // clang-format off TColStd_Array1OfBoolean tabG1(0,nb_curve-2); //array of the G1 continuity at the intersections // clang-format on TColStd_Array1OfReal local_tolerance(0, ArrayOfToler.Length() - 1); for (i = 0; i < ArrayOfToler.Length(); i++) { local_tolerance(i) = ArrayOfToler(i); } for (i = 0; i < nb_curve; i++) { if (i >= 1) { First = ArrayOfCurves(i)->FirstParameter(); Cont = GeomLProp::Continuity(ArrayOfCurves(i - 1), ArrayOfCurves(i), PreLast, First, Standard_True, Standard_True, local_tolerance(i - 1), AngularTolerance); if (Cont < GeomAbs_C0) throw Standard_ConstructionError("GeomConvert curves not C0"); else { if (Cont >= GeomAbs_G1) tabG1(i - 1) = Standard_True; // True=G1 continuity else tabG1(i - 1) = Standard_False; } } PreLast = ArrayOfCurves(i)->LastParameter(); } while (index <= nb_curve - 1) { // determination of the Wire features nb_vertexG1 = 0; while (((index + nb_vertexG1) <= nb_curve - 2) && (tabG1(index + nb_vertexG1) == Standard_True)) nb_vertexG1++; nb_group++; if (index == 0) nb_vertex_group0 = nb_vertexG1; index = index + 1 + nb_vertexG1; } if ((ClosedG1Flag) && (nb_group != 1)) { // sort of the array nb_group--; ReorderArrayOfG1Curves(ArrayOfCurves, local_tolerance, tabG1, nb_vertex_group0, ClosedTolerance); } ArrayOfIndices = new TColStd_HArray1OfInteger(0, nb_group); ArrayOfConcatenated = new TColGeom_HArray1OfBSplineCurve(0, nb_group - 1); Standard_Boolean fusion; Standard_Integer k = 0; index = 0; Pretreatment(ArrayOfCurves); Standard_Real aPolynomialCoefficient[3]; Standard_Boolean NeedDoubleDegRepara = Need2DegRepara(ArrayOfCurves); if (nb_group == 1 && ClosedG1Flag && NeedDoubleDegRepara) { Curve1 = ArrayOfCurves(nb_curve - 1); if (Curve1->Degree() > Geom2d_BSplineCurve::MaxDegree() / 2) ClosedG1Flag = Standard_False; } if ((nb_group == 1) && (ClosedG1Flag)) { // treatment of a particular case ArrayOfIndices->SetValue(0, 0); ArrayOfIndices->SetValue(1, 0); indexmin = Indexmin(ArrayOfCurves); if (indexmin != (ArrayOfCurves.Length() - 1)) ReorderArrayOfG1Curves(ArrayOfCurves, local_tolerance, tabG1, indexmin, ClosedTolerance); for (j = 0; j <= nb_curve - 1; j++) { // secondary loop inside each group if (NeedToBeTreated(ArrayOfCurves(j))) Curve1 = MultNumandDenom(Hermit::Solution(ArrayOfCurves(j)), ArrayOfCurves(j)); else Curve1 = ArrayOfCurves(j); if (j == 0) // initialisation at the beginning of the loop Curve2 = Curve1; else { if ((j == (nb_curve - 1)) && (NeedDoubleDegRepara)) { Curve2->D1(Curve2->LastParameter(), Pint, Vec1); Curve1->D1(Curve1->FirstParameter(), Pint, Vec2); lambda = Vec2.Magnitude() / Vec1.Magnitude(); TColStd_Array1OfReal KnotC1(1, Curve1->NbKnots()); Curve1->Knots(KnotC1); Curve1->D1(Curve1->LastParameter(), Pint, Vec2); ArrayOfCurves(0)->D1(ArrayOfCurves(0)->FirstParameter(), Pint, Vec1); Standard_Real lambda2 = Vec1.Magnitude() / Vec2.Magnitude(); Standard_Real tmax, a, b, c, umin = Curve1->FirstParameter(), umax = Curve1->LastParameter(); tmax = 2 * lambda * (umax - umin) / (1 + lambda * lambda2); a = (lambda * lambda2 - 1) / (2 * lambda * tmax); aPolynomialCoefficient[2] = a; b = (1 / lambda); aPolynomialCoefficient[1] = b; c = umin; aPolynomialCoefficient[0] = c; TColStd_Array1OfReal Curve1FlatKnots(1, Curve1->NbPoles() + Curve1->Degree() + 1); TColStd_Array1OfInteger KnotC1Mults(1, Curve1->NbKnots()); Curve1->Multiplicities(KnotC1Mults); BSplCLib::KnotSequence(KnotC1, KnotC1Mults, Curve1FlatKnots); KnotC1(1) = 0.0; for (ii = 2; ii <= KnotC1.Length(); ii++) { // KnotC1(ii)=(-b+Abs(a)/a*Sqrt(b*b-4*a*(c-KnotC1(ii))))/(2*a); KnotC1(ii) = (-b + Sqrt(b * b - 4 * a * (c - KnotC1(ii)))) / (2 * a); // ifv 17.05.00 buc60667 } TColgp_Array1OfPnt Curve1Poles(1, Curve1->NbPoles()); Curve1->Poles(Curve1Poles); for (ii = 1; ii <= Curve1->NbKnots(); ii++) KnotC1Mults(ii) = (Curve1->Degree() + KnotC1Mults(ii)); TColStd_Array1OfReal FlatKnots(1, Curve1FlatKnots.Length() + (Curve1->Degree() * Curve1->NbKnots())); BSplCLib::KnotSequence(KnotC1, KnotC1Mults, FlatKnots); TColgp_Array1OfPnt NewPoles(1, FlatKnots.Length() - (2 * Curve1->Degree() + 1)); Standard_Integer aStatus; TColStd_Array1OfReal Curve1Weights(1, Curve1->NbPoles()); Curve1->Weights(Curve1Weights); for (ii = 1; ii <= Curve1->NbPoles(); ii++) for (jj = 1; jj <= 3; jj++) Curve1Poles(ii).SetCoord(jj, Curve1Poles(ii).Coord(jj) * Curve1Weights(ii)); // POP pour WNT GeomConvert_reparameterise_evaluator ev(aPolynomialCoefficient); BSplCLib::FunctionReparameterise(ev, Curve1->Degree(), Curve1FlatKnots, Curve1Poles, FlatKnots, 2 * Curve1->Degree(), NewPoles, aStatus); TColStd_Array1OfReal NewWeights(1, FlatKnots.Length() - (2 * Curve1->Degree() + 1)); BSplCLib::FunctionReparameterise(ev, Curve1->Degree(), Curve1FlatKnots, Curve1Weights, FlatKnots, 2 * Curve1->Degree(), NewWeights, aStatus); for (ii = 1; ii <= NewPoles.Length(); ii++) for (jj = 1; jj <= 3; jj++) NewPoles(ii).SetCoord(jj, NewPoles(ii).Coord(jj) / NewWeights(ii)); Curve1 = new Geom_BSplineCurve(NewPoles, NewWeights, KnotC1, KnotC1Mults, 2 * Curve1->Degree()); } GeomConvert_CompCurveToBSplineCurve C(Curve2); fusion = C.Add(Curve1, local_tolerance(j - 1)); // merge of two consecutive curves if (fusion == Standard_False) throw Standard_ConstructionError("GeomConvert Concatenation Error"); Curve2 = C.BSplineCurve(); } } Curve2->SetPeriodic(); // only one C1 curve Curve2->RemoveKnot(Curve2->LastUKnotIndex(), Curve2->Multiplicity(Curve2->LastUKnotIndex()) - 1, Precision::Confusion()); ArrayOfConcatenated->SetValue(0, Curve2); } else // clang-format off for (i=0;i<=nb_group-1;i++){ //principal loop on each G1 continuity // clang-format on nb_vertexG1 = 0; // group while (((index + nb_vertexG1) <= nb_curve - 2) && (tabG1(index + nb_vertexG1) == Standard_True)) nb_vertexG1++; if ((!ClosedG1Flag) || (nb_group == 1)) { // filling of the array of index which are kept k++; ArrayOfIndices->SetValue(k - 1, index); if (k == nb_group) ArrayOfIndices->SetValue(k, 0); } else { k++; ArrayOfIndices->SetValue(k - 1, index + nb_vertex_group0 + 1); if (k == nb_group) ArrayOfIndices->SetValue(k, nb_vertex_group0 + 1); } for (j = index; j <= index + nb_vertexG1; j++) { // secondary loop inside each group if (NeedToBeTreated(ArrayOfCurves(j))) Curve1 = MultNumandDenom(Hermit::Solution(ArrayOfCurves(j)), ArrayOfCurves(j)); else Curve1 = ArrayOfCurves(j); if (index == j) // initialisation at the beginning of the loop ArrayOfConcatenated->SetValue(i, Curve1); else { // Merge of two consecutive curves. GeomConvert_CompCurveToBSplineCurve C(ArrayOfConcatenated->Value(i)); fusion = C.Add(Curve1, local_tolerance(j - 1), Standard_True); if (fusion == Standard_False) throw Standard_ConstructionError("GeomConvert Concatenation Error"); ArrayOfConcatenated->SetValue(i, C.BSplineCurve()); } } index = index + 1 + nb_vertexG1; } } //================================================================================================= void GeomConvert::C0BSplineToC1BSplineCurve(Handle(Geom_BSplineCurve)& BS, const Standard_Real tolerance, const Standard_Real AngularTol) { Standard_Boolean fusion; Handle(TColGeom_HArray1OfBSplineCurve) ArrayOfConcatenated; // the array with the resulting curves GeomConvert::C0BSplineToArrayOfC1BSplineCurve(BS, ArrayOfConcatenated, AngularTol, tolerance); GeomConvert_CompCurveToBSplineCurve C(ArrayOfConcatenated->Value(0)); if (ArrayOfConcatenated->Length() >= 2) { Standard_Integer i; for (i = 1; i < ArrayOfConcatenated->Length(); i++) { fusion = C.Add(ArrayOfConcatenated->Value(i), tolerance); if (fusion == Standard_False) throw Standard_ConstructionError("GeomConvert Concatenation Error"); } } BS = C.BSplineCurve(); } //================================================================================================= void GeomConvert::C0BSplineToArrayOfC1BSplineCurve(const Handle(Geom_BSplineCurve)& BS, Handle(TColGeom_HArray1OfBSplineCurve)& tabBS, const Standard_Real tolerance) { C0BSplineToArrayOfC1BSplineCurve(BS, tabBS, Precision::Angular(), tolerance); } //================================================================================================= void GeomConvert::C0BSplineToArrayOfC1BSplineCurve(const Handle(Geom_BSplineCurve)& BS, Handle(TColGeom_HArray1OfBSplineCurve)& tabBS, const Standard_Real AngularTolerance, const Standard_Real tolerance) { TColStd_Array1OfInteger BSMults(1, BS->NbKnots()); TColStd_Array1OfReal BSKnots(1, BS->NbKnots()); Standard_Integer i, j, nbcurveC1 = 1; Standard_Real U1, U2; Standard_Boolean closed_flag = Standard_False; gp_Pnt point; gp_Vec V1, V2; // Standard_Boolean fusion; BS->Knots(BSKnots); BS->Multiplicities(BSMults); // clang-format off for (i=BS->FirstUKnotIndex() ;i<=(BS->LastUKnotIndex()-1);i++){ //give the number of C1 curves // clang-format on if (BSMults(i) == BS->Degree()) nbcurveC1++; } if (nbcurveC1 > 1) { TColGeom_Array1OfBSplineCurve ArrayOfCurves(0, nbcurveC1 - 1); TColStd_Array1OfReal ArrayOfToler(0, nbcurveC1 - 2); for (i = 0; i <= nbcurveC1 - 2; i++) // filling of the array of tolerances ArrayOfToler(i) = tolerance; // with the variable tolerance U2 = BS->FirstParameter(); j = BS->FirstUKnotIndex() + 1; for (i = 0; i < nbcurveC1; i++) { // filling of the array of curves U1 = U2; // with the curves C1 segmented while (BSMults(j) < BS->Degree() && j < BS->LastUKnotIndex()) j++; U2 = BSKnots(j); j++; Handle(Geom_BSplineCurve) BSbis = Handle(Geom_BSplineCurve)::DownCast(BS->Copy()); BSbis->Segment(U1, U2); ArrayOfCurves(i) = BSbis; } Handle(TColStd_HArray1OfInteger) ArrayOfIndices; BS->D1(BS->FirstParameter(), point, V1); BS->D1(BS->LastParameter(), point, V2); if ((BS->IsClosed()) && (V1.IsParallel(V2, AngularTolerance))) { // check if the BSpline is closed G1 closed_flag = Standard_True; } GeomConvert::ConcatC1(ArrayOfCurves, ArrayOfToler, ArrayOfIndices, tabBS, closed_flag, tolerance, AngularTolerance); } else { tabBS = new TColGeom_HArray1OfBSplineCurve(0, 0); tabBS->SetValue(0, BS); } }