// Copyright (c) 1991-1999 Matra Datavision // Copyright (c) 1999-2014 OPEN CASCADE SAS // // This file is part of Open CASCADE Technology software library. // // This library is free software; you can redistribute it and/or modify it under // the terms of the GNU Lesser General Public License version 2.1 as published // by the Free Software Foundation, with special exception defined in the file // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT // distribution for complete text of the license and disclaimer of any warranty. // // Alternatively, this file may be used under the terms of Open CASCADE // commercial license or contractual agreement. #ifndef _gp_Circ2d_HeaderFile #define _gp_Circ2d_HeaderFile #include #include #include #include #include #include //! Describes a circle in the plane (2D space). //! A circle is defined by its radius and positioned in the //! plane with a coordinate system (a gp_Ax22d object) as follows: //! - the origin of the coordinate system is the center of the circle, and //! - the orientation (direct or indirect) of the coordinate //! system gives an implicit orientation to the circle (and //! defines its trigonometric sense). //! This positioning coordinate system is the "local //! coordinate system" of the circle. //! Note: when a gp_Circ2d circle is converted into a //! Geom2d_Circle circle, some implicit properties of the //! circle are used explicitly: //! - the implicit orientation corresponds to the direction in //! which parameter values increase, //! - the starting point for parameterization is that of the "X //! Axis" of the local coordinate system (i.e. the "X Axis" of the circle). //! See Also //! GccAna and Geom2dGcc packages which provide //! functions for constructing circles defined by geometric constraints //! gce_MakeCirc2d which provides functions for more //! complex circle constructions //! Geom2d_Circle which provides additional functions for //! constructing circles and works, with the parametric //! equations of circles in particular gp_Ax22d class gp_Circ2d { public: DEFINE_STANDARD_ALLOC //! creates an indefinite circle. gp_Circ2d() : radius (RealLast()) {} //! The location point of theXAxis is the center of the circle. //! Warnings : //! It is not forbidden to create a circle with theRadius = 0.0 Raises ConstructionError if theRadius < 0.0. //! Raised if theRadius < 0.0. gp_Circ2d (const gp_Ax2d& theXAxis, const Standard_Real theRadius, const Standard_Boolean theIsSense = Standard_True) : radius (theRadius) { Standard_ConstructionError_Raise_if (theRadius < 0.0, "gp_Circ2d() - radius should be positive number"); pos = gp_Ax22d (theXAxis, theIsSense); } //! theAxis defines the Xaxis and Yaxis of the circle which defines //! the origin and the sense of parametrization. //! The location point of theAxis is the center of the circle. //! Warnings : //! It is not forbidden to create a circle with theRadius = 0.0 Raises ConstructionError if theRadius < 0.0. //! Raised if theRadius < 0.0. gp_Circ2d (const gp_Ax22d& theAxis, const Standard_Real theRadius) : pos (theAxis), radius (theRadius) { Standard_ConstructionError_Raise_if (theRadius < 0.0, "gp_Circ2d() - radius should be positive number"); } //! Changes the location point (center) of the circle. void SetLocation (const gp_Pnt2d& theP) { pos.SetLocation (theP); } //! Changes the X axis of the circle. void SetXAxis (const gp_Ax2d& theA) { pos.SetXAxis (theA); } //! Changes the X axis of the circle. void SetAxis (const gp_Ax22d& theA) { pos.SetAxis (theA); } //! Changes the Y axis of the circle. void SetYAxis (const gp_Ax2d& theA) { pos.SetYAxis (theA); } //! Modifies the radius of this circle. //! This class does not prevent the creation of a circle where //! theRadius is null. //! Exceptions //! Standard_ConstructionError if theRadius is negative. void SetRadius (const Standard_Real theRadius) { Standard_ConstructionError_Raise_if (theRadius < 0.0, "gp_Circ2d::SetRadius() - radius should be positive number"); radius = theRadius; } //! Computes the area of the circle. Standard_Real Area() const { return M_PI * radius * radius; } //! Returns the normalized coefficients from the implicit equation //! of the circle : //! theA * (X**2) + theB * (Y**2) + 2*theC*(X*Y) + 2*theD*X + 2*theE*Y + theF = 0.0 void Coefficients (Standard_Real& theA, Standard_Real& theB, Standard_Real& theC, Standard_Real& theD, Standard_Real& theE, Standard_Real& theF) const; //! Does contain theP ? //! Returns True if the distance between theP and any point on //! the circumference of the circle is lower of equal to //! . Standard_Boolean Contains (const gp_Pnt2d& theP, const Standard_Real theLinearTolerance) const { return Distance (theP) <= theLinearTolerance; } //! Computes the minimum of distance between the point theP and any //! point on the circumference of the circle. Standard_Real Distance (const gp_Pnt2d& theP) const; //! Computes the square distance between and the point theP. Standard_Real SquareDistance (const gp_Pnt2d& theP) const; //! computes the circumference of the circle. Standard_Real Length() const { return 2. * M_PI * radius; } //! Returns the location point (center) of the circle. const gp_Pnt2d& Location() const { return pos.Location(); } //! Returns the radius value of the circle. Standard_Real Radius() const { return radius; } //! returns the position of the circle. const gp_Ax22d& Axis() const { return pos; } //! returns the position of the circle. Idem Axis(me). const gp_Ax22d& Position() const { return pos; } //! returns the X axis of the circle. gp_Ax2d XAxis() const { return gp_Ax2d (pos.XAxis()); } //! Returns the Y axis of the circle. //! Reverses the direction of the circle. gp_Ax2d YAxis() const { return gp_Ax2d (pos.YAxis()); } //! Reverses the orientation of the local coordinate system //! of this circle (the "Y Direction" is reversed) and therefore //! changes the implicit orientation of this circle. //! Reverse assigns the result to this circle, void Reverse() { gp_Dir2d aTemp = pos.YDirection(); aTemp.Reverse(); pos.SetAxis (gp_Ax22d (pos.Location(), pos.XDirection(), aTemp)); } //! Reverses the orientation of the local coordinate system //! of this circle (the "Y Direction" is reversed) and therefore //! changes the implicit orientation of this circle. //! Reversed creates a new circle. Standard_NODISCARD gp_Circ2d Reversed() const; //! Returns true if the local coordinate system is direct //! and false in the other case. Standard_Boolean IsDirect() const { return (pos.XDirection().Crossed (pos.YDirection())) >= 0.0; } Standard_EXPORT void Mirror (const gp_Pnt2d& theP); //! Performs the symmetrical transformation of a circle with respect //! to the point theP which is the center of the symmetry Standard_NODISCARD Standard_EXPORT gp_Circ2d Mirrored (const gp_Pnt2d& theP) const; Standard_EXPORT void Mirror (const gp_Ax2d& theA); //! Performs the symmetrical transformation of a circle with respect //! to an axis placement which is the axis of the symmetry. Standard_NODISCARD Standard_EXPORT gp_Circ2d Mirrored (const gp_Ax2d& theA) const; void Rotate (const gp_Pnt2d& theP, const Standard_Real theAng) { pos.Rotate (theP, theAng); } //! Rotates a circle. theP is the center of the rotation. //! Ang is the angular value of the rotation in radians. Standard_NODISCARD gp_Circ2d Rotated (const gp_Pnt2d& theP, const Standard_Real theAng) const { gp_Circ2d aCirc = *this; aCirc.pos.Rotate (theP, theAng); return aCirc; } void Scale (const gp_Pnt2d& theP, const Standard_Real theS); //! Scales a circle. theS is the scaling value. //! Warnings : //! If theS is negative the radius stay positive but //! the "XAxis" and the "YAxis" are reversed as for //! an ellipse. Standard_NODISCARD gp_Circ2d Scaled (const gp_Pnt2d& theP, const Standard_Real theS) const; void Transform (const gp_Trsf2d& theT); //! Transforms a circle with the transformation theT from class Trsf2d. Standard_NODISCARD gp_Circ2d Transformed (const gp_Trsf2d& theT) const; void Translate (const gp_Vec2d& theV) { pos.Translate (theV); } //! Translates a circle in the direction of the vector theV. //! The magnitude of the translation is the vector's magnitude. Standard_NODISCARD gp_Circ2d Translated (const gp_Vec2d& theV) const { gp_Circ2d aCirc = *this; aCirc.pos.Translate (theV); return aCirc; } void Translate (const gp_Pnt2d& theP1, const gp_Pnt2d& theP2) { pos.Translate (theP1, theP2); } //! Translates a circle from the point theP1 to the point theP2. Standard_NODISCARD gp_Circ2d Translated (const gp_Pnt2d& theP1, const gp_Pnt2d& theP2) const { gp_Circ2d aCirc = *this; aCirc.pos.Translate (theP1, theP2); return aCirc; } private: gp_Ax22d pos; Standard_Real radius; }; // ======================================================================= // function : Coefficients // purpose : // ======================================================================= inline void gp_Circ2d::Coefficients (Standard_Real& theA, Standard_Real& theB, Standard_Real& theC, Standard_Real& theD, Standard_Real& theE, Standard_Real& theF) const { Standard_Real aXc = pos.Location().X(); Standard_Real anYc = pos.Location().Y(); theA = 1.0; theB = 1.0; theC = 0.0; theD = - aXc; theE = - anYc; theF = aXc * aXc + anYc * anYc - radius * radius; } // ======================================================================= // function : Distance // purpose : // ======================================================================= inline Standard_Real gp_Circ2d::Distance (const gp_Pnt2d& theP) const { gp_XY aCoord = theP.XY(); aCoord.Subtract (pos.Location().XY()); Standard_Real aD = radius - aCoord.Modulus(); if (aD < 0) { aD = -aD; } return aD; } // ======================================================================= // function : Reversed // purpose : // ======================================================================= inline gp_Circ2d gp_Circ2d::Reversed() const { gp_Circ2d aCirc = *this; gp_Dir2d aTemp = pos.YDirection(); aTemp.Reverse(); aCirc.pos.SetAxis (gp_Ax22d(pos.Location(), pos.XDirection(), aTemp)); return aCirc; } // ======================================================================= // function : SquareDistance // purpose : // ======================================================================= inline Standard_Real gp_Circ2d::SquareDistance (const gp_Pnt2d& theP) const { gp_XY aCoord = theP.XY(); aCoord.Subtract (pos.Location().XY()); Standard_Real aD = radius - aCoord.Modulus(); return aD * aD; } // ======================================================================= // function : Scale // purpose : // ======================================================================= inline void gp_Circ2d::Scale (const gp_Pnt2d& theP, const Standard_Real theS) { radius *= theS; if (radius < 0) { radius = -radius; } pos.Scale (theP, theS); } // ======================================================================= // function : Scaled // purpose : // ======================================================================= inline gp_Circ2d gp_Circ2d::Scaled (const gp_Pnt2d& theP, const Standard_Real theS) const { gp_Circ2d aCirc = *this; aCirc.radius *= theS; if (aCirc.radius < 0) { aCirc.radius = -aCirc.radius; } aCirc.pos.Scale (theP, theS); return aCirc; } // ======================================================================= // function : Transform // purpose : // ======================================================================= inline void gp_Circ2d::Transform (const gp_Trsf2d& theT) { radius *= theT.ScaleFactor(); if (radius < 0) { radius = -radius; } pos.Transform (theT); } // ======================================================================= // function : Transformed // purpose : // ======================================================================= inline gp_Circ2d gp_Circ2d::Transformed (const gp_Trsf2d& theT) const { gp_Circ2d aCirc = *this; aCirc.radius *= theT.ScaleFactor(); if (aCirc.radius < 0) { aCirc.radius = -aCirc.radius; } aCirc.pos.Transform (theT); return aCirc; } #endif // _gp_Circ2d_HeaderFile