// Created on: 2015-09-21 // Copyright (c) 2015 OPEN CASCADE SAS // // This file is part of Open CASCADE Technology software library. // // This library is free software; you can redistribute it and/or modify it under // the terms of the GNU Lesser General Public License version 2.1 as published // by the Free Software Foundation, with special exception defined in the file // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT // distribution for complete text of the license and disclaimer of any warranty. // // Alternatively, this file may be used under the terms of Open CASCADE // commercial license or contractual agreement. #include #include #include #include #include //================================================================================================= void Geom2dEvaluator::CalculateD0(gp_Pnt2d& theValue, const gp_Vec2d& theD1, const Standard_Real theOffset) { if (theD1.SquareMagnitude() <= gp::Resolution()) throw Standard_NullValue("Geom2dEvaluator: Undefined normal vector " "because tangent vector has zero-magnitude!"); gp_Dir2d aNormal(theD1.Y(), -theD1.X()); theValue.ChangeCoord().Add(aNormal.XY() * theOffset); } //================================================================================================= void Geom2dEvaluator::CalculateD1(gp_Pnt2d& theValue, gp_Vec2d& theD1, const gp_Vec2d& theD2, const Standard_Real theOffset) { // P(u) = p(u) + Offset * Ndir / R // with R = || p' ^ Z|| and Ndir = P' ^ Z // P'(u) = p'(u) + (Offset / R**2) * (DNdir/DU * R - Ndir * (DR/R)) gp_XY Ndir(theD1.Y(), -theD1.X()); gp_XY DNdir(theD2.Y(), -theD2.X()); Standard_Real R2 = Ndir.SquareModulus(); Standard_Real R = Sqrt(R2); Standard_Real R3 = R * R2; Standard_Real Dr = Ndir.Dot(DNdir); if (R3 <= gp::Resolution()) { if (R2 <= gp::Resolution()) throw Standard_NullValue("Geom2dEvaluator_OffsetCurve: Null derivative"); // We try another computation but the stability is not very good. DNdir.Multiply(R); DNdir.Subtract(Ndir.Multiplied(Dr / R)); DNdir.Multiply(theOffset / R2); } else { // Same computation as IICURV in EUCLID-IS because the stability is better DNdir.Multiply(theOffset / R); DNdir.Subtract(Ndir.Multiplied(theOffset * Dr / R3)); } Ndir.Multiply(theOffset / R); // P(u) theValue.ChangeCoord().Add(Ndir); // P'(u) theD1.Add(gp_Vec2d(DNdir)); } //================================================================================================= void Geom2dEvaluator::CalculateD2(gp_Pnt2d& theValue, gp_Vec2d& theD1, gp_Vec2d& theD2, const gp_Vec2d& theD3, const Standard_Boolean theIsDirChange, const Standard_Real theOffset) { // P(u) = p(u) + Offset * Ndir / R // with R = || p' ^ Z|| and Ndir = P' ^ Z // P'(u) = p'(u) + (Offset / R**2) * (DNdir/DU * R - Ndir * (DR/R)) // P"(u) = p"(u) + (Offset / R) * (D2Ndir/DU - DNdir * (2.0 * Dr/ R**2) + // Ndir * ( (3.0 * Dr**2 / R**4) - (D2r / R**2))) gp_XY Ndir(theD1.Y(), -theD1.X()); gp_XY DNdir(theD2.Y(), -theD2.X()); gp_XY D2Ndir(theD3.Y(), -theD3.X()); Standard_Real R2 = Ndir.SquareModulus(); Standard_Real R = Sqrt(R2); Standard_Real R3 = R2 * R; Standard_Real R4 = R2 * R2; Standard_Real R5 = R3 * R2; Standard_Real Dr = Ndir.Dot(DNdir); Standard_Real D2r = Ndir.Dot(D2Ndir) + DNdir.Dot(DNdir); if (R5 <= gp::Resolution()) { if (R4 <= gp::Resolution()) throw Standard_NullValue("Geom2dEvaluator: Null derivative"); // We try another computation but the stability is not very good dixit ISG. // V2 = P" (U) : D2Ndir.Subtract(DNdir.Multiplied(2.0 * Dr / R2)); D2Ndir.Add(Ndir.Multiplied(((3.0 * Dr * Dr) / R4) - (D2r / R2))); D2Ndir.Multiply(theOffset / R); // V1 = P' (U) : DNdir.Multiply(R); DNdir.Subtract(Ndir.Multiplied(Dr / R)); DNdir.Multiply(theOffset / R2); } else { // Same computation as IICURV in EUCLID-IS because the stability is better. // V2 = P" (U) : D2Ndir.Multiply(theOffset / R); D2Ndir.Subtract(DNdir.Multiplied(2.0 * theOffset * Dr / R3)); D2Ndir.Add(Ndir.Multiplied(theOffset * (((3.0 * Dr * Dr) / R5) - (D2r / R3)))); // V1 = P' (U) DNdir.Multiply(theOffset / R); DNdir.Subtract(Ndir.Multiplied(theOffset * Dr / R3)); } Ndir.Multiply(theOffset / R); // P(u) theValue.ChangeCoord().Add(Ndir); // P'(u) : theD1.Add(gp_Vec2d(DNdir)); // P"(u) : if (theIsDirChange) theD2.Reverse(); theD2.Add(gp_Vec2d(D2Ndir)); } //================================================================================================= void Geom2dEvaluator::CalculateD3(gp_Pnt2d& theValue, gp_Vec2d& theD1, gp_Vec2d& theD2, gp_Vec2d& theD3, const gp_Vec2d& theD4, const Standard_Boolean theIsDirChange, const Standard_Real theOffset) { // P(u) = p(u) + Offset * Ndir / R // with R = || p' ^ Z|| and Ndir = P' ^ Z // P'(u) = p'(u) + (Offset / R**2) * (DNdir/DU * R - Ndir * (DR/R)) // P"(u) = p"(u) + (Offset / R) * (D2Ndir/DU - DNdir * (2.0 * Dr/ R**2) + // Ndir * ( (3.0 * Dr**2 / R**4) - (D2r / R**2))) // P"'(u) = p"'(u) + (Offset / R) * (D3Ndir - (3.0 * Dr/R**2 ) * D2Ndir - // (3.0 * D2r / R2) * DNdir) + (3.0 * Dr * Dr / R4) * DNdir - // (D3r/R2) * Ndir + (6.0 * Dr * Dr / R4) * Ndir + // (6.0 * Dr * D2r / R4) * Ndir - (15.0 * Dr* Dr* Dr /R6) * Ndir gp_XY Ndir(theD1.Y(), -theD1.X()); gp_XY DNdir(theD2.Y(), -theD2.X()); gp_XY D2Ndir(theD3.Y(), -theD3.X()); gp_XY D3Ndir(theD4.Y(), -theD4.X()); Standard_Real R2 = Ndir.SquareModulus(); Standard_Real R = Sqrt(R2); Standard_Real R3 = R2 * R; Standard_Real R4 = R2 * R2; Standard_Real R5 = R3 * R2; Standard_Real R6 = R3 * R3; Standard_Real R7 = R5 * R2; Standard_Real Dr = Ndir.Dot(DNdir); Standard_Real D2r = Ndir.Dot(D2Ndir) + DNdir.Dot(DNdir); Standard_Real D3r = Ndir.Dot(D3Ndir) + 3.0 * DNdir.Dot(D2Ndir); if (R7 <= gp::Resolution()) { if (R6 <= gp::Resolution()) throw Standard_NullValue("Geom2dEvaluator: Null derivative"); // We try another computation but the stability is not very good dixit ISG. // V3 = P"' (U) : D3Ndir.Subtract(D2Ndir.Multiplied(3.0 * theOffset * Dr / R2)); D3Ndir.Subtract((DNdir.Multiplied((3.0 * theOffset) * ((D2r / R2) + (Dr * Dr) / R4)))); D3Ndir.Add(Ndir.Multiplied( (theOffset * (6.0 * Dr * Dr / R4 + 6.0 * Dr * D2r / R4 - 15.0 * Dr * Dr * Dr / R6 - D3r)))); D3Ndir.Multiply(theOffset / R); // V2 = P" (U) : R4 = R2 * R2; D2Ndir.Subtract(DNdir.Multiplied(2.0 * Dr / R2)); D2Ndir.Subtract(Ndir.Multiplied(((3.0 * Dr * Dr) / R4) - (D2r / R2))); D2Ndir.Multiply(theOffset / R); // V1 = P' (U) : DNdir.Multiply(R); DNdir.Subtract(Ndir.Multiplied(Dr / R)); DNdir.Multiply(theOffset / R2); } else { // Same computation as IICURV in EUCLID-IS because the stability is better. // V3 = P"' (U) : D3Ndir.Multiply(theOffset / R); D3Ndir.Subtract(D2Ndir.Multiplied(3.0 * theOffset * Dr / R3)); D3Ndir.Subtract(DNdir.Multiplied(((3.0 * theOffset) * ((D2r / R3) + (Dr * Dr) / R5)))); D3Ndir.Add(Ndir.Multiplied( (theOffset * (6.0 * Dr * Dr / R5 + 6.0 * Dr * D2r / R5 - 15.0 * Dr * Dr * Dr / R7 - D3r)))); // V2 = P" (U) : D2Ndir.Multiply(theOffset / R); D2Ndir.Subtract(DNdir.Multiplied(2.0 * theOffset * Dr / R3)); D2Ndir.Subtract(Ndir.Multiplied(theOffset * (((3.0 * Dr * Dr) / R5) - (D2r / R3)))); // V1 = P' (U) : DNdir.Multiply(theOffset / R); DNdir.Subtract(Ndir.Multiplied(theOffset * Dr / R3)); } Ndir.Multiply(theOffset / R); // P(u) theValue.ChangeCoord().Add(Ndir); // P'(u) : theD1.Add(gp_Vec2d(DNdir)); // P"(u) theD2.Add(gp_Vec2d(D2Ndir)); // P"'(u) if (theIsDirChange) theD3.Reverse(); theD3.Add(gp_Vec2d(D2Ndir)); }