// Copyright (c) 1995-1999 Matra Datavision // Copyright (c) 1999-2014 OPEN CASCADE SAS // // This file is part of Open CASCADE Technology software library. // // This library is free software; you can redistribute it and/or modify it under // the terms of the GNU Lesser General Public License version 2.1 as published // by the Free Software Foundation, with special exception defined in the file // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT // distribution for complete text of the license and disclaimer of any warranty. // // Alternatively, this file may be used under the terms of Open CASCADE // commercial license or contractual agreement. // init. de MinRad et MaxRad (PRO15604), JCT 09/10/98 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include //=========================================================================== // Creation of a circle tangent to a circle, a straight line and a point. + //=========================================================================== GccAna_Circ2d3Tan::GccAna_Circ2d3Tan(const GccEnt_QualifiedCirc& Qualified1, const GccEnt_QualifiedLin& Qualified2, const gp_Pnt2d& Point3, const Standard_Real Tolerance) : //========================================================================= // Initialization of fields. + //========================================================================= cirsol(1, 4), qualifier1(1, 4), qualifier2(1, 4), qualifier3(1, 4), TheSame1(1, 4), TheSame2(1, 4), TheSame3(1, 4), pnttg1sol(1, 4), pnttg2sol(1, 4), pnttg3sol(1, 4), par1sol(1, 4), par2sol(1, 4), par3sol(1, 4), pararg1(1, 4), pararg2(1, 4), pararg3(1, 4) { gp_Dir2d dirx(1.0, 0.0); Standard_Real Tol = Abs(Tolerance); Standard_Real MaxRad = 1e10, MinRad = 1e-6; WellDone = Standard_False; NbrSol = 0; if (!(Qualified1.IsEnclosed() || Qualified1.IsEnclosing() || Qualified1.IsOutside() || Qualified1.IsUnqualified()) || !(Qualified2.IsEnclosed() || Qualified2.IsOutside() || Qualified2.IsUnqualified())) { throw GccEnt_BadQualifier(); return; } //========================================================================= // Processing. + //========================================================================= gp_Circ2d C1(Qualified1.Qualified()); gp_Lin2d L2(Qualified2.Qualified()); Standard_Real R1 = C1.Radius(); gp_Pnt2d center1(C1.Location()); gp_Pnt2d origin2(L2.Location()); gp_Dir2d dir2(L2.Direction()); gp_Dir2d normL2(-dir2.Y(), dir2.X()); TColStd_Array1OfReal Radius(1, 2); GccAna_CircLin2dBisec Bis1(C1, L2); GccAna_LinPnt2dBisec Bis2(L2, Point3); if (Bis1.IsDone() && Bis2.IsDone()) { Standard_Integer nbsolution1 = Bis1.NbSolutions(); for (Standard_Integer i = 1; i <= nbsolution1; i++) { Handle(GccInt_Bisec) Sol1 = Bis1.ThisSolution(i); Handle(GccInt_Bisec) Sol2 = Bis2.ThisSolution(); GccInt_IType typ1 = Sol1->ArcType(); GccInt_IType typ2 = Sol2->ArcType(); IntAna2d_AnaIntersection Intp; if (typ1 == GccInt_Lin) { if (typ2 == GccInt_Lin) { Intp.Perform(Sol1->Line(), Sol2->Line()); } else if (typ2 == GccInt_Par) { Intp.Perform(Sol1->Line(), IntAna2d_Conic(Sol2->Parabola())); } } else if (typ1 == GccInt_Par) { if (typ2 == GccInt_Lin) { Intp.Perform(Sol2->Line(), IntAna2d_Conic(Sol1->Parabola())); } else if (typ2 == GccInt_Par) { Intp.Perform(Sol1->Parabola(), IntAna2d_Conic(Sol2->Parabola())); } } if (Intp.IsDone()) { if (!Intp.IsEmpty()) { for (Standard_Integer j = 1; j <= Intp.NbPoints(); j++) { gp_Pnt2d Center(Intp.Point(j).Value()); Standard_Real dist1 = Center.Distance(C1.Location()); Standard_Real dist2 = L2.Distance(Center); Standard_Real dist3 = Center.Distance(Point3); Standard_Integer nbsol1 = 0; Standard_Integer nbsol3 = 0; Standard_Boolean ok = Standard_False; if (Qualified1.IsEnclosed()) { if (dist1 - R1 < Tolerance) { Radius(1) = Abs(R1 - dist1); nbsol1 = 1; ok = Standard_True; } } else if (Qualified1.IsOutside()) { if (R1 - dist1 < Tolerance) { Radius(1) = Abs(R1 - dist1); nbsol1 = 1; ok = Standard_True; } } else if (Qualified1.IsEnclosing()) { ok = Standard_True; nbsol1 = 1; Radius(1) = Abs(R1 - dist1); } else if (Qualified1.IsUnqualified()) { ok = Standard_True; nbsol1 = 2; Radius(1) = Abs(R1 - dist1); Radius(2) = R1 + dist1; } if (Qualified2.IsEnclosed() && ok) { if ((((L2.Location().X() - Center.X()) * (-L2.Direction().Y())) + ((L2.Location().Y() - Center.Y()) * (L2.Direction().X()))) <= 0) { for (Standard_Integer ii = 1; ii <= nbsol1; ii++) { if (Abs(dist2 - Radius(ii)) < Tol) { ok = Standard_True; Radius(1) = Radius(ii); } } } } else if (Qualified2.IsOutside() && ok) { if ((((L2.Location().X() - Center.X()) * (-L2.Direction().Y())) + ((L2.Location().Y() - Center.Y()) * (L2.Direction().X()))) >= 0) { for (Standard_Integer ii = 1; ii <= nbsol1; ii++) { if (Abs(dist2 - Radius(ii)) < Tol) { ok = Standard_True; Radius(1) = Radius(ii); } } } } else if (Qualified2.IsUnqualified() && ok) { for (Standard_Integer ii = 1; ii <= nbsol1; ii++) { if (Abs(dist2 - Radius(ii)) < Tol) { ok = Standard_True; Radius(1) = Radius(ii); } } } if (Abs(dist3 - Radius(1)) <= Tol && ok) { ok = Standard_True; nbsol3 = 1; } if (ok) { for (Standard_Integer k = 1; k <= nbsol3; k++) { if (NbrSol == 4) break; // pop : if the radius is too great - no creation if (Radius(k) > MaxRad) break; if (Abs(Radius(k)) < MinRad) break; NbrSol++; cirsol(NbrSol) = gp_Circ2d(gp_Ax2d(Center, dirx), Radius(k)); // ========================================================== Standard_Real distcc1 = Center.Distance(center1); if (!Qualified1.IsUnqualified()) { qualifier1(NbrSol) = Qualified1.Qualifier(); } else if (Abs(distcc1 + Radius(k) - R1) < Tol) { qualifier1(NbrSol) = GccEnt_enclosed; } else if (Abs(distcc1 - R1 - Radius(k)) < Tol) { qualifier1(NbrSol) = GccEnt_outside; } else { qualifier1(NbrSol) = GccEnt_enclosing; } gp_Dir2d dc2(origin2.XY() - Center.XY()); if (!Qualified2.IsUnqualified()) { qualifier2(NbrSol) = Qualified2.Qualifier(); } else if (dc2.Dot(normL2) > 0.0) { qualifier2(NbrSol) = GccEnt_outside; } else { qualifier2(NbrSol) = GccEnt_enclosed; } qualifier3(NbrSol) = GccEnt_noqualifier; if (Center.Distance(C1.Location()) <= Tolerance && Abs(Radius(k) - R1) <= Tolerance) { TheSame1(NbrSol) = 1; } else { TheSame1(NbrSol) = 0; // modified by NIZHNY-EAP Mon Nov 1 13:48:21 1999 ___BEGIN___ // gp_Dir2d dc(C1.Location().XY()-Center.XY()); gp_Dir2d dc(Center.XY() - C1.Location().XY()); // modified by NIZHNY-EAP Mon Nov 1 13:48:55 1999 ___END___ pnttg1sol(NbrSol) = gp_Pnt2d(Center.XY() + Radius(k) * dc.XY()); par1sol(NbrSol) = ElCLib::Parameter(cirsol(NbrSol), pnttg1sol(NbrSol)); pararg1(NbrSol) = ElCLib::Parameter(C1, pnttg1sol(NbrSol)); } TheSame2(NbrSol) = 0; TheSame3(NbrSol) = 0; gp_Dir2d dc(L2.Location().XY() - Center.XY()); Standard_Real sign = dc.Dot(gp_Dir2d(-L2.Direction().Y(), L2.Direction().X())); dc = gp_Dir2d(sign * gp_XY(-L2.Direction().Y(), L2.Direction().X())); pnttg2sol(NbrSol) = gp_Pnt2d(Center.XY() + Radius(k) * dc.XY()); par2sol(NbrSol) = ElCLib::Parameter(cirsol(NbrSol), pnttg2sol(NbrSol)); pararg2(NbrSol) = ElCLib::Parameter(L2, pnttg2sol(NbrSol)); pnttg3sol(NbrSol) = Point3; par3sol(NbrSol) = ElCLib::Parameter(cirsol(NbrSol), pnttg3sol(NbrSol)); pararg3(NbrSol) = 0.; } } } } WellDone = Standard_True; } if (NbrSol == 4) break; } } }