diff --git a/src/GCPnts/FILES b/src/GCPnts/FILES index 5dc21c935b..666b09e61e 100755 --- a/src/GCPnts/FILES +++ b/src/GCPnts/FILES @@ -4,7 +4,6 @@ GCPnts_AbscissaPoint.hxx GCPnts_AbscissaType.hxx GCPnts_DeflectionType.hxx GCPnts_QuasiUniformAbscissa.cxx -GCPnts_QuasiUniformAbscissa.pxx GCPnts_QuasiUniformAbscissa.hxx GCPnts_QuasiUniformDeflection.cxx GCPnts_QuasiUniformDeflection.pxx diff --git a/src/GCPnts/GCPnts_QuasiUniformAbscissa.cxx b/src/GCPnts/GCPnts_QuasiUniformAbscissa.cxx index 3cf02a15ca..0ba5633794 100644 --- a/src/GCPnts/GCPnts_QuasiUniformAbscissa.cxx +++ b/src/GCPnts/GCPnts_QuasiUniformAbscissa.cxx @@ -12,65 +12,200 @@ // Alternatively, this file may be used under the terms of Open CASCADE // commercial license or contractual agreement. -//#include - -#include -#include -#include -#include #include + +#include #include -#include -#include -#include -#include -#include #include - -#ifdef OCCT_DEBUG -//#include - -//static Standard_Integer compteur = 0; -#endif +#include +#include +#include +#include //======================================================================= //function : GCPnts_QuasiUniformAbscissa -//purpose : +//purpose : //======================================================================= - -GCPnts_QuasiUniformAbscissa::GCPnts_QuasiUniformAbscissa () - :myDone(Standard_False), - myNbPoints(0) +GCPnts_QuasiUniformAbscissa::GCPnts_QuasiUniformAbscissa() +: myDone (Standard_False), + myNbPoints (0) { + // } -#include -#include +//======================================================================= +//function : GCPnts_QuasiUniformAbscissa +//purpose : +//======================================================================= +GCPnts_QuasiUniformAbscissa::GCPnts_QuasiUniformAbscissa (const Adaptor3d_Curve& theC, + const Standard_Integer theNbPoints) +: myDone (Standard_False), + myNbPoints (0) +{ + Initialize (theC, theNbPoints); +} -#define TheCurve Adaptor3d_Curve -#define Handle_TheBezierCurve Handle(Geom_BezierCurve) -#define Handle_TheBSplineCurve Handle(Geom_BSplineCurve) -#define TheArray1OfPnt TColgp_Array1OfPnt -#define ThePnt gp_Pnt +//======================================================================= +//function : GCPnts_QuasiUniformAbscissa +//purpose : +//======================================================================= +GCPnts_QuasiUniformAbscissa::GCPnts_QuasiUniformAbscissa (const Adaptor3d_Curve& theC, + const Standard_Integer theNbPoints, + const Standard_Real theU1, + const Standard_Real theU2) +: myDone (Standard_False), + myNbPoints (0) +{ + Initialize (theC, theNbPoints, theU1, theU2); +} -#include "GCPnts_QuasiUniformAbscissa.pxx" +//======================================================================= +//function : GCPnts_QuasiUniformAbscissa +//purpose : +//======================================================================= +GCPnts_QuasiUniformAbscissa::GCPnts_QuasiUniformAbscissa (const Adaptor2d_Curve2d& theC, + const Standard_Integer theNbPoints) +: myDone (Standard_False), + myNbPoints (0) +{ + Initialize (theC, theNbPoints); +} -#undef TheCurve -#undef Handle_TheBezierCurve -#undef Handle_TheBSplineCurve -#undef TheArray1OfPnt -#undef ThePnt +//======================================================================= +//function : GCPnts_QuasiUniformAbscissa +//purpose : +//======================================================================= +GCPnts_QuasiUniformAbscissa::GCPnts_QuasiUniformAbscissa (const Adaptor2d_Curve2d& theC, + const Standard_Integer theNbPoints, + const Standard_Real theU1, + const Standard_Real theU2) +: myDone (Standard_False), + myNbPoints (0) +{ + Initialize (theC, theNbPoints, theU1, theU2); +} -#include -#include +//======================================================================= +//function : Initialize +//purpose : +//======================================================================= +void GCPnts_QuasiUniformAbscissa::Initialize (const Adaptor3d_Curve& theC, + const Standard_Integer theNbPoints) +{ + Initialize (theC, theNbPoints, theC.FirstParameter(), theC.LastParameter()); +} -#define TheCurve Adaptor2d_Curve2d -#define Handle_TheBezierCurve Handle(Geom2d_BezierCurve) -#define Handle_TheBSplineCurve Handle(Geom2d_BSplineCurve) -#define TheArray1OfPnt TColgp_Array1OfPnt2d -#define ThePnt gp_Pnt2d +//======================================================================= +//function : Initialize +//purpose : +//======================================================================= +void GCPnts_QuasiUniformAbscissa::Initialize (const Adaptor2d_Curve2d& theC, + const Standard_Integer theNbPoints) +{ + Initialize (theC, theNbPoints, theC.FirstParameter(), theC.LastParameter()); +} -#include "GCPnts_QuasiUniformAbscissa.pxx" +//======================================================================= +//function : Initialize +//purpose : +//======================================================================= +void GCPnts_QuasiUniformAbscissa::Initialize (const Adaptor3d_Curve& theC, + const Standard_Integer theNbPoints, + const Standard_Real theU1, + const Standard_Real theU2) +{ + initialize (theC, theNbPoints, theU1, theU2); +} +//======================================================================= +//function : Initialize +//purpose : +//======================================================================= +void GCPnts_QuasiUniformAbscissa::Initialize (const Adaptor2d_Curve2d& theC, + const Standard_Integer theNbPoints, + const Standard_Real theU1, + const Standard_Real theU2) +{ + initialize (theC, theNbPoints, theU1, theU2); +} +//======================================================================= +//function : initialize +//purpose : +//======================================================================= +template +void GCPnts_QuasiUniformAbscissa::initialize (const TheCurve& theC, + const Standard_Integer theNbPoints, + const Standard_Real theU1, + const Standard_Real theU2) +{ + if (theC.GetType() != GeomAbs_BezierCurve + && theC.GetType() != GeomAbs_BSplineCurve) + { + GCPnts_UniformAbscissa aUA (theC, theNbPoints, theU1, theU2); + myDone = aUA.IsDone(); + myNbPoints = aUA.NbPoints(); + myParams = new TColStd_HArray1OfReal (1, myNbPoints); + for (Standard_Integer aPntIter = 1 ; aPntIter <= myNbPoints; ++aPntIter) + { + myParams->SetValue (aPntIter, aUA.Parameter (aPntIter)); + } + return; + } + Standard_ConstructionError_Raise_if (theNbPoints <= 1, "GCPnts_QuasiUniformAbscissa::Initialize(), number of points should be >= 2"); + + // evaluate the approximative length of the 3dCurve + myNbPoints = theNbPoints; + Standard_Real aLength = 0.0; + const Standard_Real dU = (theU2 - theU1) / (2 * theNbPoints - 1); + + TColgp_Array1OfPnt2d aLP (1, 2 * theNbPoints); // table Length <-> Param + typename GCPnts_TCurveTypes::Point aP1, aP2; + aP1 = theC.Value (theU1); + + // On additionne toutes les distances + for (Standard_Integer i = 0; i < 2 * theNbPoints; ++i) + { + aP2 = theC.Value (theU1 + i * dU); + const Standard_Real aDist = aP1.Distance (aP2); + aLength += aDist; + aLP(i+1) = gp_Pnt2d (aLength, theU1 + (i * dU)); + aP1 = aP2; + } + + // On cherche a mettre NbPoints dans la curve. + // on met les points environ a Length/NbPoints. + if (IsEqual (aLength, 0.0)) + { //use usual analytical grid + Standard_Real aStep = (theU2 - theU1) / (theNbPoints - 1); + myParams = new TColStd_HArray1OfReal (1, theNbPoints); + myParams->SetValue (1, theU1); + for (Standard_Integer i = 2; i < theNbPoints; ++i) + { + myParams->SetValue (i, theU1 + aStep * (i - 1)); + } + } + else + { + const Standard_Real aDCorde = aLength / (theNbPoints - 1); + Standard_Real aCorde = aDCorde; + Standard_Integer anIndex = 1; + myParams = new TColStd_HArray1OfReal (1, theNbPoints); + myParams->SetValue (1, theU1); + for (Standard_Integer i = 2; i < theNbPoints; ++i) + { + while (aLP (anIndex).X() < aCorde) + { + ++anIndex; + } + Standard_Real anAlpha = (aCorde - aLP(anIndex - 1).X()) / (aLP (anIndex).X() - aLP (anIndex-1).X()); + Standard_Real aU = aLP (anIndex - 1).Y() + anAlpha * (aLP (anIndex).Y() - aLP (anIndex-1).Y()); + myParams->SetValue (i, aU); + aCorde = i * aDCorde; + } + } + + myParams->SetValue (theNbPoints, theU2); + myDone = Standard_True; +} diff --git a/src/GCPnts/GCPnts_QuasiUniformAbscissa.hxx b/src/GCPnts/GCPnts_QuasiUniformAbscissa.hxx index 2497128944..def821e800 100644 --- a/src/GCPnts/GCPnts_QuasiUniformAbscissa.hxx +++ b/src/GCPnts/GCPnts_QuasiUniformAbscissa.hxx @@ -20,89 +20,108 @@ #include #include -class Standard_DomainError; -class Standard_ConstructionError; -class Standard_OutOfRange; -class StdFail_NotDone; class Adaptor3d_Curve; class Adaptor2d_Curve2d; //! This class provides an algorithm to compute a uniform abscissa -//! distribution of points on a curve, i.e. a sequence of -//! equidistant points. The distance between two -//! consecutive points is measured along the curve. -//! The distribution is defined: -//! - either by the curvilinear distance between two consecutive points -//! - or by a number of points. +//! distribution of points on a curve, i.e. a sequence of equidistant points. +//! The distance between two consecutive points is measured along the curve. +//! +//! The distribution is defined by a number of points. class GCPnts_QuasiUniformAbscissa { public: DEFINE_STANDARD_ALLOC - - //! Constructs an empty algorithm. To define the problem - //! to be solved, use the function Initialize. + //! Constructs an empty algorithm. + //! To define the problem to be solved, use the function Initialize. Standard_EXPORT GCPnts_QuasiUniformAbscissa(); - + //! Computes a uniform abscissa distribution of points - //! - on the curve C where Abscissa is the curvilinear distance between + //! - on the curve where Abscissa is the curvilinear distance between //! two consecutive points of the distribution. - Standard_EXPORT GCPnts_QuasiUniformAbscissa(const Adaptor3d_Curve& C, const Standard_Integer NbPoints); - + Standard_EXPORT GCPnts_QuasiUniformAbscissa (const Adaptor3d_Curve& theC, + const Standard_Integer theNbPoints); + //! Computes a uniform abscissa distribution of points - //! on the part of curve C limited by the two parameter values U1 and U2, + //! on the part of curve limited by the two parameter values theU1 and theU2, //! where Abscissa is the curvilinear distance between //! two consecutive points of the distribution. //! The first point of the distribution is either the origin of - //! curve C or the point of parameter U1. The following - //! points are computed such that the curvilinear + //! curve or the point of parameter theU1. + //! The following points are computed such that the curvilinear //! distance between two consecutive points is equal to Abscissa. //! The last point of the distribution is either the end - //! point of curve C or the point of parameter U2. + //! point of curve or the point of parameter theU2. //! However the curvilinear distance between this last - //! point and the point just preceding it in the distribution - //! is, of course, generally not equal to Abscissa. - //! Use the function IsDone to verify that the - //! computation was successful, the function NbPoints - //! to obtain the number of points of the computed - //! distribution, and the function Parameter to read the - //! parameter of each point. + //! point and the point just preceding it in the distribution is, + //! of course, generally not equal to Abscissa. + //! Use the function IsDone() to verify that the computation was successful, + //! the function NbPoints() to obtain the number of points of the computed distribution, + //! and the function Parameter() to read the parameter of each point. + //! //! Warning - //! The roles of U1 and U2 are inverted if U1 > U2 . + //! The roles of theU1 and theU2 are inverted if theU1 > theU2. //! Warning - //! C is an adapted curve, that is, an object which is an - //! interface between: + //! theC is an adapted curve, that is, an object which is an interface between: //! - the services provided by either a 2D curve from - //! the package Geom2d (in the case of an - //! Adaptor2d_Curve2d curve) or a 3D curve from - //! the package Geom (in the case of an Adaptor3d_Curve curve), + //! the package Geom2d (in the case of an Adaptor2d_Curve2d curve) + //! or a 3D curve from the package Geom (in the case of an Adaptor3d_Curve curve), //! - and those required on the curve by the computation algorithm. - Standard_EXPORT GCPnts_QuasiUniformAbscissa(const Adaptor3d_Curve& C, const Standard_Integer NbPoints, const Standard_Real U1, const Standard_Real U2); - - //! Initialize the algorithms with , and - Standard_EXPORT void Initialize (const Adaptor3d_Curve& C, const Standard_Integer NbPoints); - - //! Initialize the algorithms with , , , - //! . - Standard_EXPORT void Initialize (const Adaptor3d_Curve& C, const Standard_Integer NbPoints, const Standard_Real U1, const Standard_Real U2); - - //! Computes a uniform abscissa distribution of points on - //! the Curve2d . - //! defines the nomber of desired points. - Standard_EXPORT GCPnts_QuasiUniformAbscissa(const Adaptor2d_Curve2d& C, const Standard_Integer NbPoints); - - //! Computes a Uniform abscissa distribution of points - //! on a part of the Curve2d . - Standard_EXPORT GCPnts_QuasiUniformAbscissa(const Adaptor2d_Curve2d& C, const Standard_Integer NbPoints, const Standard_Real U1, const Standard_Real U2); - - //! Initialize the algorithms with , and - Standard_EXPORT void Initialize (const Adaptor2d_Curve2d& C, const Standard_Integer NbPoints); - - //! Initialize the algorithms with , , , - //! . - Standard_EXPORT void Initialize (const Adaptor2d_Curve2d& C, const Standard_Integer NbPoints, const Standard_Real U1, const Standard_Real U2); + //! @param theC [in] input 3D curve + //! @param theNbPoints [in] defines the number of desired points + //! @param theU1 [in] first parameter on curve + //! @param theU2 [in] last parameter on curve + Standard_EXPORT GCPnts_QuasiUniformAbscissa (const Adaptor3d_Curve& theC, + const Standard_Integer theNbPoints, + const Standard_Real theU1, const Standard_Real theU2); + + //! Initialize the algorithms with 3D curve and target number of points. + //! @param theC [in] input 3D curve + //! @param theNbPoints [in] defines the number of desired points + Standard_EXPORT void Initialize (const Adaptor3d_Curve& theC, + const Standard_Integer theNbPoints); + + //! Initialize the algorithms with 3D curve, target number of points and curve parameter range. + //! @param theC [in] input 3D curve + //! @param theNbPoints [in] defines the number of desired points + //! @param theU1 [in] first parameter on curve + //! @param theU2 [in] last parameter on curve + Standard_EXPORT void Initialize (const Adaptor3d_Curve& theC, + const Standard_Integer theNbPoints, + const Standard_Real theU1, const Standard_Real theU2); + + //! Computes a uniform abscissa distribution of points on the 2D curve. + //! @param theC [in] input 2D curve + //! @param theNbPoints [in] defines the number of desired points + Standard_EXPORT GCPnts_QuasiUniformAbscissa (const Adaptor2d_Curve2d& theC, + const Standard_Integer theNbPoints); + + //! Computes a Uniform abscissa distribution of points on a part of the 2D curve. + //! @param theC [in] input 2D curve + //! @param theNbPoints [in] defines the number of desired points + //! @param theU1 [in] first parameter on curve + //! @param theU2 [in] last parameter on curve + Standard_EXPORT GCPnts_QuasiUniformAbscissa (const Adaptor2d_Curve2d& theC, + const Standard_Integer theNbPoints, + const Standard_Real theU1, const Standard_Real theU2); + + //! Initialize the algorithms with 2D curve and target number of points. + //! @param theC [in] input 2D curve + //! @param theNbPoints [in] defines the number of desired points + Standard_EXPORT void Initialize (const Adaptor2d_Curve2d& theC, + const Standard_Integer theNbPoints); + //! Initialize the algorithms with 2D curve, target number of points and curve parameter range. + //! @param theC [in] input 2D curve + //! @param theNbPoints [in] defines the number of desired points + //! @param theU1 [in] first parameter on curve + //! @param theU2 [in] last parameter on curve + Standard_EXPORT void Initialize (const Adaptor2d_Curve2d& theC, + const Standard_Integer theNbPoints, + const Standard_Real theU1, const Standard_Real theU2); + //! Returns true if the computation was successful. //! IsDone is a protection against: //! - non-convergence of the algorithm @@ -146,6 +165,15 @@ public: return myParams->Value (Index); } +private: + + //! This function divides given curve on the several parts with equal length. + //! It returns array of parameters in the control points. + template + void initialize (const TheCurve& theC, + const Standard_Integer theNbPoints, + const Standard_Real theU1, const Standard_Real theU2); + private: Standard_Boolean myDone; Standard_Integer myNbPoints; diff --git a/src/GCPnts/GCPnts_QuasiUniformAbscissa.pxx b/src/GCPnts/GCPnts_QuasiUniformAbscissa.pxx deleted file mode 100644 index 1eda6a64c9..0000000000 --- a/src/GCPnts/GCPnts_QuasiUniformAbscissa.pxx +++ /dev/null @@ -1,141 +0,0 @@ -// Created on: 1996-08-22 -// Created by: Stagiaire Mary FABIEN -// Copyright (c) 1996-1999 Matra Datavision -// Copyright (c) 1999-2014 OPEN CASCADE SAS -// -// This file is part of Open CASCADE Technology software library. -// -// This library is free software; you can redistribute it and/or modify it under -// the terms of the GNU Lesser General Public License version 2.1 as published -// by the Free Software Foundation, with special exception defined in the file -// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT -// distribution for complete text of the license and disclaimer of any warranty. -// -// Alternatively, this file may be used under the terms of Open CASCADE -// commercial license or contractual agreement. - -//======================================================================= -//function : GCPnts_QuasiUniformAbscissa -//purpose : -//======================================================================= - -GCPnts_QuasiUniformAbscissa::GCPnts_QuasiUniformAbscissa(const TheCurve& C, - const Standard_Integer NbPoints) -{ - Initialize(C, NbPoints); -} - -//======================================================================= -//function : GCPnts_QuasiUniformAbscissa -//purpose : -//======================================================================= - -GCPnts_QuasiUniformAbscissa::GCPnts_QuasiUniformAbscissa(const TheCurve& C, - const Standard_Integer NbPoints, - const Standard_Real U1, - const Standard_Real U2) -{ - Initialize(C, NbPoints, U1, U2); -} - -//======================================================================= -//function : Initialize -//purpose : -//======================================================================= - -void GCPnts_QuasiUniformAbscissa::Initialize(const TheCurve& C, - const Standard_Integer NbPoints) -{ - Initialize(C, NbPoints, C.FirstParameter(), - C.LastParameter()); -} - - -//======================================================================= -//function : Initialize -//purpose : This function divides given curve on the several parts with -// equal length. It returns array of parameters in the -// control points. -//======================================================================= -void GCPnts_QuasiUniformAbscissa::Initialize(const TheCurve& C, - const Standard_Integer NbPoints, - const Standard_Real U1, - const Standard_Real U2) -{ - Standard_Integer i; - if ((C.GetType() != GeomAbs_BezierCurve) && (C.GetType() != GeomAbs_BSplineCurve)) - { - GCPnts_UniformAbscissa UA(C,NbPoints,U1,U2); - myDone = UA.IsDone(); - myNbPoints = UA.NbPoints(); - myParams = new TColStd_HArray1OfReal(1,myNbPoints); - for( i = 1 ; i <= myNbPoints ; i++ ) - myParams->SetValue(i,UA.Parameter(i)); -#ifdef OCCT_DEBUG - -// char name [100]; -// for( i = 1 ; i <= NbPoints ; i++ ) { -// sprintf(name,"%s_%d","pnt2d",i+(compteur++)); -// DrawTrSurf::Set(name,C->Value(UA.Parameter(i))); -// } -#endif - } - else - { - Standard_ConstructionError_Raise_if (NbPoints <= 1, - "GCPnts_QuasiUniformAbscissa::Initialize() - number of points should be >= 2"); - -// evaluate the approximative length of the 3dCurve - myNbPoints = NbPoints; - Standard_Real Length = 0.; - Standard_Real Dist, dU = (U2 - U1) / ( 2*NbPoints - 1); - - TColgp_Array1OfPnt2d LP(1,2*NbPoints); // tableau Longueur <-> Param - ThePnt P1, P2; - P1 = C.Value(U1); - -// On additionne toutes les distances - for ( i = 0; i < 2*NbPoints ; i++) { - P2 = C.Value(U1 + i*dU); - Dist = P1.Distance(P2); - Length += Dist; - LP(i+1) = gp_Pnt2d( Length, U1 + (i*dU)); - P1 = P2; - } - -// On cherche a mettre NbPoints dans la curve. -// on met les points environ a Length/NbPoints. - - if(IsEqual(Length, 0.0)) - {//use usual analytical grid - Standard_Real aStep = (U2 - U1) / (NbPoints - 1); - myParams = new TColStd_HArray1OfReal(1,NbPoints); - myParams->SetValue(1,U1); - for ( i = 2; i < NbPoints; i++) - { - myParams->SetValue(i, U1 + aStep*(i-1)); - } - } - else - { - Standard_Real DCorde = Length / ( NbPoints - 1); - Standard_Real Corde = DCorde; - Standard_Integer Index = 1; - Standard_Real U, Alpha; - myParams = new TColStd_HArray1OfReal(1,NbPoints); - myParams->SetValue(1,U1); - for ( i = 2; i < NbPoints; i++) - { - while ( LP(Index).X() < Corde) Index ++; - Alpha = (Corde - LP(Index-1).X()) / (LP(Index).X() - LP(Index-1).X()); - U = LP(Index-1).Y() + Alpha * ( LP(Index).Y() - LP(Index-1).Y()); - myParams->SetValue(i,U); - Corde = i*DCorde; - } - } - - myParams->SetValue(NbPoints,U2); - myDone = Standard_True; - } -} -