diff --git a/src/QABugs/QABugs_19.cxx b/src/QABugs/QABugs_19.cxx index 46df73de95..8dc0e69aaa 100644 --- a/src/QABugs/QABugs_19.cxx +++ b/src/QABugs/QABugs_19.cxx @@ -5267,6 +5267,79 @@ static Standard_Integer OCC29412 (Draw_Interpretor& /*theDI*/, Standard_Integer return 0; } +#include +#include +//======================================================================= +//function : OCC30492 +//purpose : BFGS and FRPR fail if starting point is exactly the minimum. +//======================================================================= +// Function is: +// f(x) = x^2 +class SquareFunction : public math_MultipleVarFunctionWithGradient +{ +public: + SquareFunction() + {} + + virtual Standard_Integer NbVariables() const + { + return 1; + } + virtual Standard_Boolean Value(const math_Vector& X, + Standard_Real& F) + { + const Standard_Real x = X(1); + F = x * x; + + return Standard_True; + } + virtual Standard_Boolean Gradient(const math_Vector& X, + math_Vector& G) + { + const Standard_Real x = X(1); + G(1) = 2 * x; + + return Standard_True; + } + virtual Standard_Boolean Values(const math_Vector& X, + Standard_Real& F, + math_Vector& G) + { + Value(X, F); + Gradient(X, G); + + return Standard_True; + } + +private: +}; + +static Standard_Integer OCC30492(Draw_Interpretor& /*theDI*/, + Standard_Integer /*theNArg*/, + const char** /*theArgs*/) +{ + SquareFunction aFunc; + math_Vector aStartPnt(1, 1); + aStartPnt(1) = 0.0; + + // BFGS and FRPR fail when if starting point is exactly the minimum. + math_FRPR aFRPR(aFunc, Precision::Confusion()); + aFRPR.Perform(aFunc, aStartPnt); + if (!aFRPR.IsDone()) + std::cout << "OCC30492: Error: FRPR optimization is not done." << std::endl; + else + std::cout << "OCC30492: OK: FRPR optimization is done." << std::endl; + + math_BFGS aBFGS(1, Precision::Confusion()); + aBFGS.Perform(aFunc, aStartPnt); + if (!aBFGS.IsDone()) + std::cout << "OCC30492: Error: BFGS optimization is not done." << std::endl; + else + std::cout << "OCC30492: OK: BFGS optimization is done." << std::endl; + + return 0; +} + //======================================================================== //function : Commands_19 //purpose : @@ -5390,5 +5463,8 @@ void QABugs::Commands_19(Draw_Interpretor& theCommands) { "OCC28310: Tests validness of iterator in AIS_InteractiveContext after an removing object from it", __FILE__, OCC28310, group); theCommands.Add("OCC29412", "OCC29412 [nb cycles]: test display / remove of many small objects", __FILE__, OCC29412, group); + theCommands.Add ("OCC30492", + "OCC30492: Checks whether BFGS and FRPR fail when starting point is exact minimum.", + __FILE__, OCC30492, group); return; } diff --git a/src/math/math_BFGS.cxx b/src/math/math_BFGS.cxx index 60a0644b30..6073c8b801 100644 --- a/src/math/math_BFGS.cxx +++ b/src/math/math_BFGS.cxx @@ -27,170 +27,157 @@ #include #include -#define R 0.61803399 -#define C (1.0-R) -#define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); -#define SIGN(a, b) ((b) > 0.0 ? fabs(a) : -fabs(a)) -#define MOV3(a,b,c, d, e, f) (a)=(d); (b)= (e); (c)=(f); - - // l'utilisation de math_BrentMinumim pur trouver un minimum dans une direction // donnee n'est pas du tout optimale. voir peut etre interpolation cubique // classique et aussi essayer "recherche unidimensionnelle economique" // PROGRAMMATION MATHEMATIQUE (theorie et algorithmes) tome1 page 82. -class DirFunction : public math_FunctionWithDerivative { +// Target function for 1D problem, point and direction are known. +class DirFunction : public math_FunctionWithDerivative +{ - math_Vector *P0; - math_Vector *Dir; - math_Vector *P; - math_Vector *G; - math_MultipleVarFunctionWithGradient *F; + math_Vector *P0; + math_Vector *Dir; + math_Vector *P; + math_Vector *G; + math_MultipleVarFunctionWithGradient *F; -public : +public: - DirFunction(math_Vector& V1, - math_Vector& V2, - math_Vector& V3, - math_Vector& V4, - math_MultipleVarFunctionWithGradient& f) ; + //! Ctor. + DirFunction(math_Vector& V1, + math_Vector& V2, + math_Vector& V3, + math_Vector& V4, + math_MultipleVarFunctionWithGradient& f) + : P0(&V1), + Dir(&V2), + P(&V3), + G(&V4), + F(&f) + {} + + //! Sets point and direction. + void Initialize(const math_Vector& p0, + const math_Vector& dir) const + { + *P0 = p0; + *Dir = dir; + } + + void TheGradient(math_Vector& Grad) + { + Grad = *G; + } + + virtual Standard_Boolean Value(const Standard_Real x, + Standard_Real& fval) + { + *P = *Dir; + P->Multiply(x); + P->Add(*P0); + fval = 0.; + return F->Value(*P, fval); + } + + virtual Standard_Boolean Values(const Standard_Real x, + Standard_Real& fval, + Standard_Real& D) + { + *P = *Dir; + P->Multiply(x); + P->Add(*P0); + fval = D = 0.; + if (F->Values(*P, fval, *G)) + { + D = (*G).Multiplied(*Dir); + return Standard_True; + } + + return Standard_False; + } + virtual Standard_Boolean Derivative(const Standard_Real x, + Standard_Real& D) + { + *P = *Dir; + P->Multiply(x); + P->Add(*P0); + Standard_Real fval; + D = 0.; + if (F->Values(*P, fval, *G)) + { + D = (*G).Multiplied(*Dir); + return Standard_True; + } + + return Standard_False; + } - void Initialize(const math_Vector& p0, const math_Vector& dir) const; - void TheGradient(math_Vector& Grad); - virtual Standard_Boolean Value(const Standard_Real x, Standard_Real& fval) ; - virtual Standard_Boolean Values(const Standard_Real x, Standard_Real& fval, Standard_Real& D) ; - virtual Standard_Boolean Derivative(const Standard_Real x, Standard_Real& D) ; - }; - DirFunction::DirFunction(math_Vector& V1, - math_Vector& V2, - math_Vector& V3, - math_Vector& V4, - math_MultipleVarFunctionWithGradient& f) { - - P0 = &V1; - Dir = &V2; - P = &V3; - F = &f; - G = &V4; - } - - void DirFunction::Initialize(const math_Vector& p0, - const math_Vector& dir) const{ - - *P0 = p0; - *Dir = dir; - } - - void DirFunction::TheGradient(math_Vector& Grad) { - Grad = *G; - } - - - Standard_Boolean DirFunction::Value(const Standard_Real x, - Standard_Real& fval) - { - *P = *Dir; - P->Multiply(x); - P->Add(*P0); - fval = 0.; - return F->Value(*P, fval); - } - - Standard_Boolean DirFunction::Values(const Standard_Real x, - Standard_Real& fval, - Standard_Real& D) - { - *P = *Dir; - P->Multiply(x); - P->Add(*P0); - fval = D = 0.; - if (F->Values(*P, fval, *G)) - { - D = (*G).Multiplied(*Dir); - return Standard_True; - } - return Standard_False; - } - Standard_Boolean DirFunction::Derivative(const Standard_Real x, - Standard_Real& D) - { - *P = *Dir; - P->Multiply(x); - P->Add(*P0); - Standard_Real fval; - D = 0.; - if (F->Values(*P, fval, *G)) - { - D = (*G).Multiplied(*Dir); - return Standard_True; - } - return Standard_False; - } - -//======================================================================= +//============================================================================= //function : ComputeInitScale //purpose : Compute the appropriate initial value of scale factor to apply // to the direction to approach to the minimum of the function -//======================================================================= +//============================================================================= static Standard_Boolean ComputeInitScale(const Standard_Real theF0, - const math_Vector& theDir, - const math_Vector& theGr, - Standard_Real& theScale) + const math_Vector& theDir, + const math_Vector& theGr, + Standard_Real& theScale) { - Standard_Real dy1 = theGr * theDir; + const Standard_Real dy1 = theGr * theDir; if (Abs(dy1) < RealSmall()) return Standard_False; - Standard_Real aHnr1 = theDir.Norm2(); - Standard_Real alfa = 0.7*(-theF0) / dy1; + + const Standard_Real aHnr1 = theDir.Norm2(); + const Standard_Real alfa = 0.7*(-theF0) / dy1; theScale = 0.015 / Sqrt(aHnr1); if (theScale > alfa) theScale = alfa; + return Standard_True; } -//======================================================================= +//============================================================================= //function : ComputeMinMaxScale //purpose : For a given point and direction, and bounding box, // find min and max scale factors with which the point reaches borders // if we apply translation Point+Dir*Scale. //return : True if found, False if point is out of bounds. -//======================================================================= +//============================================================================= static Standard_Boolean ComputeMinMaxScale(const math_Vector& thePoint, const math_Vector& theDir, const math_Vector& theLeft, const math_Vector& theRight, - Standard_Real& theMinScale, - Standard_Real& theMaxScale) + Standard_Real& theMinScale, + Standard_Real& theMaxScale) { - Standard_Integer anIdx; - for (anIdx = 1; anIdx <= theLeft.Upper(); anIdx++) + for (Standard_Integer anIdx = 1; anIdx <= theLeft.Upper(); anIdx++) { - Standard_Real aLeft = theLeft(anIdx) - thePoint(anIdx); - Standard_Real aRight = theRight(anIdx) - thePoint(anIdx); + const Standard_Real aLeft = theLeft(anIdx) - thePoint(anIdx); + const Standard_Real aRight = theRight(anIdx) - thePoint(anIdx); if (Abs(theDir(anIdx)) > RealSmall()) { - // use PConfusion to get off a little from the bounds to prevent + // Use PConfusion to get off a little from the bounds to prevent // possible refuse in Value function. - Standard_Real aLScale = (aLeft + Precision::PConfusion()) / theDir(anIdx); - Standard_Real aRScale = (aRight - Precision::PConfusion()) / theDir(anIdx); + const Standard_Real aLScale = (aLeft + Precision::PConfusion()) / theDir(anIdx); + const Standard_Real aRScale = (aRight - Precision::PConfusion()) / theDir(anIdx); if (Abs(aLeft) < Precision::PConfusion()) { - // point is on the left border + // Point is on the left border. theMaxScale = Min(theMaxScale, Max(0., aRScale)); theMinScale = Max(theMinScale, Min(0., aRScale)); } else if (Abs(aRight) < Precision::PConfusion()) { - // point is on the right border + // Point is on the right border. theMaxScale = Min(theMaxScale, Max(0., aLScale)); theMinScale = Max(theMinScale, Min(0., aLScale)); } else if (aLeft * aRight < 0) { - // point is inside allowed range + // Point is inside allowed range. theMaxScale = Min(theMaxScale, Max(aLScale, aRScale)); theMinScale = Max(theMinScale, Min(aLScale, aRScale)); } @@ -202,8 +189,8 @@ static Standard_Boolean ComputeMinMaxScale(const math_Vector& thePoint, { // Direction is parallel to the border. // Check that the point is not out of bounds - if (aLeft > Precision::PConfusion() || - aRight < -Precision::PConfusion()) + if (aLeft > Precision::PConfusion() || + aRight < -Precision::PConfusion()) { return Standard_False; } @@ -212,13 +199,18 @@ static Standard_Boolean ComputeMinMaxScale(const math_Vector& thePoint, return Standard_True; } -static Standard_Boolean MinimizeDirection(math_Vector& P, - Standard_Real F0, - math_Vector& Gr, - math_Vector& Dir, - Standard_Real& Result, - DirFunction& F, - Standard_Boolean isBounds, +//============================================================================= +//function : MinimizeDirection +//purpose : Solves 1D minimization problem when point and directions +// are known. +//============================================================================= +static Standard_Boolean MinimizeDirection(math_Vector& P, + Standard_Real F0, + math_Vector& Gr, + math_Vector& Dir, + Standard_Real& Result, + DirFunction& F, + Standard_Boolean isBounds, const math_Vector& theLeft, const math_Vector& theRight) { @@ -262,13 +254,15 @@ static Standard_Boolean MinimizeDirection(math_Vector& P, Standard_Real F1; if (!F.Value(lambda, F1)) return Standard_False; + math_BracketMinimum Bracket(0.0, lambda); if (isBounds) Bracket.SetLimits(aMinLambda, aMaxLambda); Bracket.SetFA(F0); Bracket.SetFB(F1); Bracket.Perform(F); - if (Bracket.IsDone()) { + if (Bracket.IsDone()) + { // find minimum inside the bracket Standard_Real ax, xx, bx, Fax, Fxx, Fbx; Bracket.Values(ax, xx, bx); @@ -278,7 +272,8 @@ static Standard_Boolean MinimizeDirection(math_Vector& P, Standard_Real tol = 1.e-03; math_BrentMinimum Sol(tol, Fxx, niter, 1.e-08); Sol.Perform(F, ax, xx, bx); - if (Sol.IsDone()) { + if (Sol.IsDone()) + { Standard_Real Scale = Sol.Location(); Result = Sol.Minimum(); Dir.Multiply(Scale); @@ -313,154 +308,181 @@ static Standard_Boolean MinimizeDirection(math_Vector& P, return Standard_False; } - +//============================================================================= +//function : Perform +//purpose : Performs minimization problem using BFGS method. +//============================================================================= void math_BFGS::Perform(math_MultipleVarFunctionWithGradient& F, - const math_Vector& StartingPoint) { - - Standard_Boolean Good; - Standard_Integer n = TheLocation.Length(); - Standard_Integer j, i; - Standard_Real fae, fad, fac; + const math_Vector& StartingPoint) +{ + const Standard_Integer n = TheLocation.Length(); + Standard_Boolean Good = Standard_True; + Standard_Integer j, i; + Standard_Real fae, fad, fac; - math_Vector xi(1, n), dg(1, n), hdg(1, n); - math_Matrix hessin(1, n, 1, n); - hessin.Init(0.0); + math_Vector xi(1, n), dg(1, n), hdg(1, n); + math_Matrix hessin(1, n, 1, n); + hessin.Init(0.0); - math_Vector Temp1(1, n); - math_Vector Temp2(1, n); - math_Vector Temp3(1, n); - math_Vector Temp4(1, n); - DirFunction F_Dir(Temp1, Temp2, Temp3, Temp4, F); + math_Vector Temp1(1, n); + math_Vector Temp2(1, n); + math_Vector Temp3(1, n); + math_Vector Temp4(1, n); + DirFunction F_Dir(Temp1, Temp2, Temp3, Temp4, F); - TheLocation = StartingPoint; - Good = F.Values(TheLocation, PreviousMinimum, TheGradient); - if(!Good) { - Done = Standard_False; - TheStatus = math_FunctionError; - return; - } - for(i = 1; i <= n; i++) { - hessin(i, i) = 1.0; - xi(i) = -TheGradient(i); - } + TheLocation = StartingPoint; + Good = F.Values(TheLocation, PreviousMinimum, TheGradient); + if (!Good) + { + Done = Standard_False; + TheStatus = math_FunctionError; + return; + } + for (i = 1; i <= n; i++) + { + hessin(i, i) = 1.0; + xi(i) = -TheGradient(i); + } - for(nbiter = 1; nbiter <= Itermax; nbiter++) { - TheMinimum = PreviousMinimum; - Standard_Boolean IsGood = MinimizeDirection(TheLocation, TheMinimum, - TheGradient, - xi, TheMinimum, F_Dir, - myIsBoundsDefined, myLeft, myRight); - if(!IsGood) { - Done = Standard_False; - TheStatus = math_DirectionSearchError; - return; - } - if(IsSolutionReached(F)) { - Done = Standard_True; - TheStatus = math_OK; - return; - } - if (nbiter == Itermax) { - Done = Standard_False; - TheStatus = math_TooManyIterations; - return; - } - PreviousMinimum = TheMinimum; + for (nbiter = 1; nbiter <= Itermax; nbiter++) + { + TheMinimum = PreviousMinimum; + const Standard_Boolean IsGood = MinimizeDirection(TheLocation, TheMinimum, TheGradient, + xi, TheMinimum, F_Dir, myIsBoundsDefined, + myLeft, myRight); - dg = TheGradient; - - Good = F.Values(TheLocation, TheMinimum, TheGradient); - if(!Good) { - Done = Standard_False; - TheStatus = math_FunctionError; - return; - } - - for(i = 1; i <= n; i++) { - dg(i) = TheGradient(i) - dg(i); - } - for(i = 1; i <= n; i++) { - hdg(i) = 0.0; - for (j = 1; j <= n; j++) - hdg(i) += hessin(i, j) * dg(j); - } - fac = fae = 0.0; - for(i = 1; i <= n; i++) { - fac += dg(i) * xi(i); - fae += dg(i) * hdg(i); - } - fac = 1.0 / fac; - fad = 1.0 / fae; - - for(i = 1; i <= n; i++) - dg(i) = fac * xi(i) - fad * hdg(i); - - for(i = 1; i <= n; i++) - for(j = 1; j <= n; j++) - hessin(i, j) += fac * xi(i) * xi(j) - - fad * hdg(i) * hdg(j) + fae * dg(i) * dg(j); - - for(i = 1; i <= n; i++) { - xi(i) = 0.0; - for (j = 1; j <= n; j++) xi(i) -= hessin(i, j) * TheGradient(j); - } - } - Done = Standard_False; - TheStatus = math_TooManyIterations; - return; - } - - Standard_Boolean math_BFGS::IsSolutionReached( - math_MultipleVarFunctionWithGradient&) const { - - return 2.0 * fabs(TheMinimum - PreviousMinimum) <= - XTol * (fabs(TheMinimum) + fabs(PreviousMinimum) + EPSZ); - } - - math_BFGS::math_BFGS(const Standard_Integer NbVariables, - const Standard_Real Tolerance, - const Standard_Integer NbIterations, - const Standard_Real ZEPS) - : TheStatus(math_OK), - TheLocation(1, NbVariables), - TheGradient(1, NbVariables), - PreviousMinimum(0.), - TheMinimum(0.), - XTol(Tolerance), - EPSZ(ZEPS), - nbiter(0), - myIsBoundsDefined(Standard_False), - myLeft(1, NbVariables, 0.0), - myRight(1, NbVariables, 0.0), - Done(Standard_False), - Itermax(NbIterations) + if (IsSolutionReached(F)) { + Done = Standard_True; + TheStatus = math_OK; + return; } - - math_BFGS::~math_BFGS() + if (!IsGood) { + Done = Standard_False; + TheStatus = math_DirectionSearchError; + return; + } + PreviousMinimum = TheMinimum; + + dg = TheGradient; + + Good = F.Values(TheLocation, TheMinimum, TheGradient); + if (!Good) + { + Done = Standard_False; + TheStatus = math_FunctionError; + return; } - void math_BFGS::Dump(Standard_OStream& o) const { + for (i = 1; i <= n; i++) + dg(i) = TheGradient(i) - dg(i); - o<< "math_BFGS resolution: "; - if(Done) { - o << " Status = Done \n"; - o <<" Location Vector = " << Location() << "\n"; - o <<" Minimum value = "<< Minimum()<<"\n"; - o <<" Number of iterations = "<